Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Camthe Thi
Xem chi tiết
Nguyễn Đức Anh
6 tháng 4 2020 lúc 15:01

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Khách vãng lai đã xóa
Phạm Mạnh Hùng
7 tháng 4 2020 lúc 11:24

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Khách vãng lai đã xóa
Phạm Anh Tuấn
12 tháng 4 2020 lúc 15:10

Mình không biết sin lỗi vạn

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 4 2017 lúc 5:24

a. Đúng

Vì x 2  + 1 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:

4x – 8 + (4 – 2x) = 0 ⇔ 2x – 4 = 0 ⇔ 2x = 4 ⇔ x = 2

b. Đúng

Vì  x 2  – x + 1 = x - 1 / 2 2  + 3/4 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:

(x + 2)(2x – 1) – x – 2 = 0 ⇔ (x + 2)(2x – 2) = 0

⇔ x + 2 = 0 hoặc 2x – 2 = 0 ⇔ x = - 2 hoặc x = 1

c. Sai

Vì điều kiện xác định của phương trình là x + 1 ≠ 0 ⇔ x ≠ - 1

Do vậy phương trình Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 không thể có nghiệm x = - 1

d. Sai

Vì điều kiện xác định của phương trình là x ≠ 0

Do vậy x = 0 không phải là nghiệm của phương trình Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Đào Quang
Xem chi tiết
Nguyễn Huy Tú
22 tháng 7 2021 lúc 13:47

1.B

2.D

3.B

4;5;6;7;8( bạn sửa lại đề nhé )

 

 

Nguyễn Lê Phước Thịnh
22 tháng 7 2021 lúc 22:55

Câu 1: B

Câu 2: D

Câu 3: B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 6 2017 lúc 3:36

a) Đ

b) S

c) S

d) Đ

Nguyễn Minh Quân
Xem chi tiết
HT.Phong (9A5)
17 tháng 8 2023 lúc 16:36

Ta có tập nghiệm của phương trình là:

\(\left(x+2\right)\left(2x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-1=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\2x=1\\x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{2}\\x=3\end{matrix}\right.\)

Tập hợp S là:

\(S=\left\{-2;\dfrac{1}{2};3\right\}\)

Lần lược các phương án:

A. \(-2\in S\) (đúng)

B. \(3\in S\) (đúng)

C. \(2\in S\) (Sai)

D. \(\dfrac{1}{2}\in S\) (Đúng)

⇒ Chọn C

Bap xoai
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2023 lúc 7:25

Chọn D

Ngô Thành Chung
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 12 2020 lúc 0:30

\(\sqrt{2-f\left(x\right)}=f\left(x\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)\ge0\\f^2\left(x\right)+f\left(x\right)-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\f\left(x\right)=-2< 0\left(loại\right)\end{matrix}\right.\) 

\(\Rightarrow f\left(1\right)=f\left(2\right)=f\left(3\right)=1\)

\(\sqrt{2g\left(x\right)-1}+\sqrt[3]{3g\left(x\right)-2}=2.g\left(x\right)\)

\(VT=1.\sqrt{2g\left(x\right)-1}+1.1\sqrt[3]{3g\left(x\right)-2}\)

\(VT\le\dfrac{1}{2}\left(1+2g\left(x\right)-1\right)+\dfrac{1}{3}\left(1+1+3g\left(x\right)-2\right)\)

\(\Leftrightarrow VT\le2g\left(x\right)\)

Dấu "=" xảy ra khi và chỉ khi \(g\left(x\right)=1\)

\(\Rightarrow g\left(0\right)=g\left(3\right)=g\left(4\right)=g\left(5\right)=1\)

Để các căn thức xác định \(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)-1\ge0\\g\left(x\right)-1\ge0\end{matrix}\right.\)

Ta có:

\(\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+f\left(x\right).g\left(x\right)-f\left(x\right)-g\left(x\right)+1=0\)

\(\Leftrightarrow\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+\left[f\left(x\right)-1\right]\left[g\left(x\right)-1\right]=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\g\left(x\right)=1\end{matrix}\right.\) \(\Leftrightarrow x=3\)

Vậy tập nghiệm của pt đã cho có đúng 1 phần tử

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 1 2018 lúc 7:03

 Đáp án A

Phương pháp:

Đặt ẩn phụ, đưa về phương trình bậc hai một ẩn. Giải phương trình và suy ra ẩn t.

Cách giải:

 

Phương trình đã cho trở thành

Nguyễn Khánh Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 7 2023 lúc 13:25

4D

5B

Các câu còn lại bạn ghi lại đề nha bạn, đề bị lỗi rồi

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 1 2020 lúc 16:30