Cho ΔABC có C(2;3) và trọng tâm G(\(\frac{2}{3}\); \(\frac{1}{3}\)), đường phân giác trong góc A (d): 2x+5y+7=0. Tìm tọa độ A,B
Cho ΔABC có AB=2; BC=3;AC=6 a) Tính diện tích ΔABC=? b) Tính độ dài đường trung tuyến kẻ từ C c) Tính bán kính đường tròn ngoại tiếp ΔABC d) Tính số đo góc lớn nhất trong ΔABC.
AB+BC<AC
nên ko có tam giác ABC thỏa mãn nha bạn
1) cho ΔABC ∼ ΔDEF theo tỉ số đồng dạng k=\(\dfrac{3}{2}\) . Diện tích ΔABC là 27 cm\(^2\), thi diện tích ΔDEF là:
A. 12cm\(^2\) B.24cm\(^2\) C. 36cm\(^2\) D. 18cm\(^2\)
2) ΔABC ∼ΔDEF có AB=3cm, AC=5cm, BC=7cm, DE=6cm. Ta có :
A. DF=10cm B. DF=20cm C. EF=14cm D.EF=10cm
Cho ΔABC vuông tại A có đường cao AH.AB=2;AC=3CH.Diện tích ΔABC bằng
A.\(\dfrac{\sqrt{2}}{2}\) B.\(2\sqrt{2}\) C.\(\dfrac{3\sqrt{3}}{2}\) D.\(3\sqrt{3}\)
\(\Delta AHC\perp\) tại H ; \(AH^2=AC^2-CH^2=AC^2-\dfrac{1}{9}AC^2=\dfrac{8}{9}AC^2\)
\(\Delta ABC\perp\) tại A ; \(AH\perp BC\) tại H . Khi đó :
\(\dfrac{1}{AC^2}=\dfrac{1}{AH^2}-\dfrac{1}{AB^2}=\dfrac{9}{8AC^2}-\dfrac{1}{4}\) \(\Rightarrow\dfrac{1}{8AC^2}=\dfrac{1}{4}\Rightarrow AC^2=\dfrac{1}{2}\)
\(\Rightarrow AC=\dfrac{1}{\sqrt{2}}\)
\(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.2.\dfrac{1}{\sqrt{2}}=\dfrac{1}{\sqrt{2}}\)
Chọn A
* Cho ΔABC có BC=12cm, góc B=\(60^0\), góc C=\(40^0\)
a. Tính đường cao CH và cạnh AC
b. Tính diện tích ΔABC (làm tròn đến chữ số thập phân thứ 2)
* Cho ΔABC vuông tại A có góc B= \(30^0\), AB=6cm
a. Giải tam giác vuông ABC
b. Vẽ đường cao AH, trung tuyến AM của ΔABC. Tính diện tích ΔAHM
1.
\(a,\sin\widehat{B}=\sin60^0=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}\Leftrightarrow AC=\dfrac{12\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\\ b,AC^2=CH\cdot BC\left(HTL.\Delta\right)\\ \Rightarrow CH=\dfrac{AC^2}{BC}=9\left(cm\right)\)
Tim Gia Tri Nho Nhat Cua
a) A = x - 4 can x + 9
b) B = x - 3 can x - 10
c ) C = x - can x + 1
d ) D = x + can x + 2
Bài 2:
a: Xét ΔABC vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}\)
\(\Leftrightarrow BC=6:\sin60^0=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)
Câu 7: Một hình chữ nhật có 2 kích thước là (3x - y) và (3x + y). Biểu thức tính diện tích hình chữ nhật theo x và y là?
A. 3x² - y² B. 9x² - y²
Câu 8: Cho ΔABC. Các điểm D và E lần lượt trên các cạnh AB và AC sao cho DE / / BC. Tứ giác BDEC là hình thang cân nếu ΔABC?
A. ΔABC vuông tại A B. ΔABC cân tại A
C. ΔABC cân tại B D. ΔABC vuông tại C
Cho ΔABC có diện tích S, BC=a; CA=b
sao cho \(\cot A+\cot B=\dfrac{a^2+b^2}{2S}\)
Chứng minh ΔABC vuông
Từ C kẻ đường cao CH xuống đáy AB
\(cotA+cotB=\dfrac{AH}{CH}+\dfrac{BH}{CH}=\dfrac{AB}{CH}\)
Mà \(cotA+cotB=\dfrac{a^2+b^2}{2S}=\dfrac{AC^2+BC^2}{AB.CH}\)
=> \(\dfrac{AB}{CH}=\dfrac{AC^2+BC^2}{AB.CH}\)
=> AB2 = AC2 + BC2
=> tam giác ABC vuông tại C
\(cotA+cotB=\dfrac{cosA}{sinA}+\dfrac{cosB}{sinB}=\dfrac{\dfrac{b^2+c^2-a^2}{2bc}}{\dfrac{2S}{bc}}+\dfrac{\dfrac{a^2+c^2-b^2}{2ac}}{\dfrac{2S}{ac}}=\dfrac{b^2+c^2-a^2}{4S}+\dfrac{a^2+c^2-b^2}{4S}=\dfrac{c^2}{2S}\)
Mà theo giả thiết \(cotA+cotB=\dfrac{a^2+b^2}{2S}\)
\(\Rightarrow\dfrac{a^2+b^2}{2S}=\dfrac{c^2}{2S}\Rightarrow a^2+b^2=c^2\Rightarrow\Delta ABC\) vuông tại A theo Pitago đảo
Cho ΔABC cân tại A có Â=80 độ.Số đo góc C bằng
A.30 độ
B.40 độ
C.50 độ
D.70 độ
Các biểu thức sau,biểu thức nào là đơn thức
A.\(10x^2y+2\)
B.\(2\left(x+y\right)\)
C.\(2x\left(-\dfrac{1}{3}\right)y^2x\)
D.\(-4xy^2\)
ΔABC cân tại A có góc BÂC bằng 70 độ thì số đo mỗi góc ở đáy của tam giác cân là?
A.110 độ
B.70 đọ
C.60 độ
B.55 độ
cho ΔABC có AB=c, BC=a, CA=b. diện tích ΔABC là 5 cm2. tìm GTNN của biểu thức a2+2b2+3c2
Bài 1:Cho ΔABC có BC=2AB.Gọi M là trung điểm của BC, N là trung điểm của BM.Tia đối tia NA lấy điểm E sao cho AN=EN.
a, CM: ΔNAB=ΔNEM.
b, CM:ΔMAB cân.
c, CM:M là trọng tâm của ΔAEC.
d, CM: AB>2/3 AN.
Bài 2: cho ΔABC vuông tại C, lấy D∈AB sao cho AD=AB. Kẻ qua D đường thẳng vuông góc với AB cắt BC tại E, AE cát CD tại I.
a, CM: AE là phân giác của góc CAB.
b, CM: AD là đường trung trực của CD.
c, So sánh CD và BC
d, M là trung điểm của BC, DM cắt BI tại G. CG cắt DB tại K. CM:K là trung điểm của DB.
giúp mình với❗❗❗❗❗❗
2: Sửa đề: AD=AC
a: Xét ΔACE vuông tại C và ΔADE vuông tại D có
AE chung
AC=AD
=>ΔACE=ΔADE
=>góc CAE=góc DAE
=>AE là phân giác của góc CAD
b: AC=AD
EC=ED
=>AE là trung trực của CD
1:
a: Xét ΔNAB và ΔNEM có
NA=NE
góc ANB=góc ENM
NB=NM
=>ΔNAB=ΔNEM
b: Xét ΔBAM có BA=BM
nên ΔBAM cân tại B
c: Xét ΔCAE có
CN là trung tuyến
CM=2/3CN
=>M là trọng tâm
Cho ΔABC vuông tại A có góc C = 60 độ , AB= căn 192 cm.
Diện tích của ΔABC là \(\sqrt{a}\)cm2 . Vậy a =?
Kẻ AH vuông góc với BC
Có: A + B + C = 1800 => B = 180 - (A + C) = 180- (90 - 60) = 300
Trong tam giác AHB có: AH là đường cao và góc ABH = 300
=> tam giác AHB là 1/2 tam giác đều
=> BH = \(\frac{AB\sqrt{3}}{2}=\frac{\sqrt{192}.\sqrt{3}}{2}=12cm\)
và AH = 1/2.AB = 1/2.\(\sqrt{192}\) = \(4\sqrt{3}cm\)
Có: AH2 = HB.HC => HC = \(\frac{AH^2}{HB}=\frac{\left(4\sqrt{3}\right)^2}{12}=4cm\)
=> BC = HB + HC = 12 + 4 = 16cm
Diên tích của tam giác ABC: \(S_{ABC}=\frac{AH.BC}{2}=\frac{4\sqrt{3}.16}{2}=32\sqrt{3}cm^2=\sqrt{a}\Rightarrow a=\left(32\sqrt{3}\right)^2=3072\)
Vậy a = 3072