Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
trang lê
Xem chi tiết
Nguyễn Thị Hồng Thi
Xem chi tiết
alibaba nguyễn
13 tháng 12 2016 lúc 19:26

\(\hept{\begin{cases}mx-y=5\\x+y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1-x\\mx-1+x=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1-x\\\left(m+1\right)x=6\end{cases}}\)

Để hệ có nghiệm duy nhất thì

m + 1 ≠ 0 <=> m ≠ - 1

Để hệ vô nghiệm thì

m + 1 = 0 <=> m = - 1

Hoàng Lê Bảo Ngọc
14 tháng 12 2016 lúc 11:33

\(D=m+1\) ; \(D_x=5+1=6\) ; \(D_y=m-5\)

Để hpt có nghiệm duy nhất thì \(D\ne0\Rightarrow m\ne-1\)

Để hpt vô nghiệm thì \(\hept{\begin{cases}D=0\\D_x\ne0\end{cases}}\) hoặc \(\hept{\begin{cases}D=0\\D_y\ne0\end{cases}}\)

Dễ thấy ngay \(D_x\ne0\) . Vậy m = -1 thì hệ vô nghiệm.

Nguyễn Minh Anh
Xem chi tiết
Phạm Thị Thùy Linh
11 tháng 3 2020 lúc 12:11

Hệ phương trình có nghiệm duy nhất \(\Leftrightarrow\frac{m}{1}\ne\frac{1}{2}\Rightarrow2m\ne1\Rightarrow m\ne\frac{1}{2}\)

* Giải hệ theo m :

\(\hept{\begin{cases}mx+y=4\\x+2y=5\end{cases}\Rightarrow\hept{\begin{cases}2mx+2y=8\\x+2y=5\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2mx+x=3\\x+2y=5\end{cases}\Rightarrow\hept{\begin{cases}x\left(2m+1\right)=3\\x+2y=5\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\x+2y=5\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\\frac{3}{2m+1}+2y=5\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\2y=5-\frac{3}{2m+1}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\2y=\frac{10m-2}{2m+1}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\y=\frac{5m-1}{2m+1}\end{cases}}\)

Vì \(x>0\Rightarrow\frac{3}{2m+1}>0\Rightarrow2m+1>0\Leftrightarrow m>-\frac{1}{2}\left(1\right)\)

Vì \(y>0\Rightarrow\frac{5m-1}{2m+1}>0\)mà \(2m+1>0\Rightarrow5m-1>0\Rightarrow m>\frac{1}{5}\left(2\right)\)

Để \(y>x\Rightarrow\frac{5m-1}{2m+1}>\frac{3}{2m+1}\)\(\Rightarrow\frac{5m-1}{2m+1}-\frac{3}{2m+1}>0\)

\(\Rightarrow\frac{5m-1-3}{2m+1}>0\Rightarrow\frac{5m-4}{2m+1}>0\)

Mà \(2m+1>0\Rightarrow5m-4>0\Rightarrow m>\frac{4}{5}\)

Từ ( 1 ) , ( 2 ) và ( 3 ) \(\Rightarrow\)Để hệ phương trình có nghiệm duy nhất thỏa mãn y > x > 0 thì \(m>\frac{4}{5}\)

Giải xong muốn gãy tay :v

Khách vãng lai đã xóa
Huy Anh
Xem chi tiết
Despacito
12 tháng 2 2018 lúc 11:52

\(\hept{\begin{cases}x+y=4\left(1\right)\\2x+3y=m\left(2\right)\end{cases}}\)

từ \(\left(1\right)\)ta có: \(x=4-y\)\(\left(3\right)\)

thay \(\left(3\right)\) vào  \(\left(2\right)\)ta được 

\(2.\left(4-y\right)+3y=m\)

\(8-2y+3y=m\)

\(8+y=m\)

\(y=m-8\) \(\left(4\right)\)

hệ phương trình có nghiệm duy nhất khi pt \(\left(4\right)\)  có nghiệm duy nhất 

ta thấy pt (4) luôn có nghiệm duy nhất với \(\forall y\in R\)

vậy \(\forall y\in R\)thì hệ pt đã cho có nghiệm  \(\left(x;y\right)=\left(4-y;m-8\right)\)

theo bài ra \(\hept{\begin{cases}x>0\\y< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4-y>0\\m-8< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}y>4\\m< 8\end{cases}}\)

vậy \(m< 8\)  là tập hợp các giá trị cần tìm 

Phùng Minh Quân
12 tháng 2 2018 lúc 11:51

Ta có :

\(\hept{\begin{cases}x+y=4\\2x+3y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=4\\x+x+y+y+y=m\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=4\\4+4+y=m\end{cases}\Leftrightarrow\hept{\begin{cases}y=4-x\\8+4-x=m\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=4-12+m\\x=12-m\end{cases}}\Leftrightarrow\hept{\begin{cases}y=m-8\\x=12-m\end{cases}}\)

\(\Leftrightarrow\)\(x+y=m-8+12-m=4\)

\(\Leftrightarrow\hept{\begin{cases}y=4-8\\x=12-4\end{cases}\Leftrightarrow\hept{\begin{cases}y=-4\\x=8\end{cases}}}\)

Thoả mãn \(x>0;y< 0\)

Vậy \(x=8\) và \(y=-4\)

Tô Ngọc Minh
12 tháng 2 2018 lúc 12:14

x=8 ;y=-4

Lương Gia Huy
Xem chi tiết
Hoàng Lê Bảo Ngọc
11 tháng 1 2017 lúc 17:20

Theo định thức Grane : 

\(D=1-2m\)\(D_x=5-8=-3\)\(D_y=4-5m\)

Vì Dx khác 0 nên hệ luôn có hai nghiệm phân biệt : 

\(\hept{\begin{cases}x=\frac{D_x}{D}=-\frac{3}{1-2m}\\y=\frac{D_y}{D}=\frac{4-5m}{1-2m}\end{cases}}\)

Để x,y trái dấu thì xy < 0 \(\Leftrightarrow-\frac{3\left(4-5m\right)}{\left(1-2m\right)^2}< 0\Leftrightarrow\hept{\begin{cases}m\ne\frac{1}{2}\\4-5m>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\ne\frac{1}{2}\\m< \frac{4}{5}\end{cases}}\)

Empty AA
Xem chi tiết
Empty AA
Xem chi tiết
Nguyễn Trung Dũng
Xem chi tiết
KHANH QUYNH MAI PHAM
Xem chi tiết
giúp
Xem chi tiết
Dương
18 tháng 12 2018 lúc 22:51

Đặt \(|x-1|=z\ge0\)

Ta có hệ:\(\hept{\begin{cases}z+|y-5|=1\\z-y=-5\end{cases}}\)

\(-TH1:\)

Nếu \(y< 5\) ta có: \(\hept{\begin{cases}z-y=-4\\z-y=-5\end{cases}}\)

Hệ này vô nghiệm

\(-TH2:\)

Nếu \(y\ge5\) ta có:\(\hept{\begin{cases}z+y=6\\z-y=-5\end{cases}}\)

Giải hệ này ta có: \(\hept{\begin{cases}z=\frac{1}{2}\\y=\frac{11}{2}\end{cases}}\)

\(z=|x-1|=\frac{1}{2}\Rightarrow x-1=\pm\frac{1}{2}\)

Do đó: \(x=\frac{3}{2}\)hoặc\(x=\frac{1}{2}\)

Vậy hệ đã cho có hai nghiệm là \(\left(\frac{3}{2};\frac{11}{2}\right)\)\(\left(\frac{1}{2};\frac{11}{2}\right)\)