cho đơn thức
\(\dfrac{3}{8}xz;\)
tính tích và tính giá trị của đơn thức tại x=-1, z=-3
Thu gọn, chỉ ra bậc, phần hệ số của đơn thức (\(-\dfrac{2}{25}\) \(z^3\)\(x^3\)\(y^5\)).( \(5y^4\)\(xz^2\))^3
giúp mình gấp mình tick cho
BT17: Cho 3 đơn thức \(-\dfrac{3}{8}x^2z,\dfrac{2}{3}xy^2z^2,\dfrac{4}{5}x^3y\)
a, Tính tích của 3 đơn thức trên
b, Tính giá trị của mỗi đơn thức và giá trị của tích ba đơn thức tại x=-1, y=-2, z=-3
a: A=-3/8x^2z*2/3xy^2z^2*4/5x^3y=-1/5x^6y^3z^3
b: Khi x=-1;y=-2;z=-3 thì -3/8x^2z=-3/8*(-1)^2*(-3)=9/8
2/3xy^2z^2=2/3*(-1)*(2*3)^2=-2/3*36=-24
4/5x^3y=4/5*(-1)^3*(-3)=12/5
A=-1/5*(-1)^6*(-2)^3*(-3)^3=-216/5
a) \(\left(-\dfrac{3}{8}x^2z\right).\left(\dfrac{2}{3}xy^2z^2\right).\dfrac{4}{5}x^3y=-\dfrac{1}{5}x^6y^3z^3\)
b) Gía trị đơn thức :
\(-\dfrac{1}{5}.\left(-1\right)^6\left(-2\right)^3.3^3=-\dfrac{1}{5}.1.\left(8\right).27=\dfrac{216}{5}\)
BT17: Cho 3 đơn thức \(-\dfrac{3}{8}x^2z,\dfrac{2}{3}xy^2z^2,\dfrac{4}{5}x^3y\)
a, Tính tích hai đơn thức trên
b, Tính giá trị của mỗi đơn thức và giá trị của tích ba đơn thức tại x=-1, y=-2, z=-3
Bài tập `17`
`a,` ` @` Tớ nghĩ là tính tích ba đơn thức chứ nhỉ ?
\(-\dfrac{3}{8}x^2z.\dfrac{2}{3}xy^2z^2.\dfrac{4}{5}x^3y\\ =\left(-\dfrac{3}{8}.\dfrac{2}{3}.\dfrac{4}{5}\right)\left(x^2.x.x^3\right)\left(y^2.y\right)\left(z.z^2\right)\\ =-\dfrac{1}{5}x^6y^3z^3\)
`b,` Tại `x=-1 ; y=-2;z=-3`
Thì \(-\dfrac{3}{8}x^2z=-\dfrac{3}{8}.\left(-1\right)^2.\left(-3\right)=-\dfrac{3}{8}.1.\left(-3\right)=\dfrac{9}{8}\\ \dfrac{2}{3}xy^2z^2=\dfrac{2}{3}.\left(-1\right)\left(-2\right)^2\left(-3\right)^2=\dfrac{2}{3}.\left(-1\right).4.9=-24\\ \dfrac{4}{5}x^3y=\dfrac{4}{5}.\left(-1\right)^3.\left(-2\right)=\dfrac{4}{5}.\left(-1\right).\left(-2\right)=\dfrac{8}{5}\)
Cho đơn thức
A = \(\left(\dfrac{-3}{8}x^2y\right).\left(\dfrac{2}{3}xy^2.2^2\right).\left(\dfrac{4}{5}x^3y\right)\)
a) Thu gọn đơn thức
b)Xác định hệ số , phần biến của đơn thức A
\(a,A=\left(\dfrac{-3}{8}x^2y\right)\left(\dfrac{2}{3}xy^2z^2\right)\left(\dfrac{4}{5}x^3y\right)\\ =\left(\dfrac{-3}{8}.\dfrac{2}{3}.\dfrac{4}{5}\right)\left(x^2.x.x^3\right)\left(y.y^2.y\right).z^2\\ =\dfrac{-1}{5}x^6y^4z^2\)
b, Hệ số: \(-\dfrac{1}{5}\)
Biến: \(x^6y^4z^2\)
c, Bậc: 12
d,Thay x=-1, y=-2, z=3 vào A ta có:
\(A=\dfrac{-1}{5}x^6y^4z^2=\dfrac{-1}{5}.\left(-1\right)^2.\left(-2\right)^4.3^2=\dfrac{-1}{5}.1.16.9=\dfrac{-144}{5}\)
Thu gọn đơn thức A, cho biết hệ số, phần biến và bậc của đơn thức thu gọn được.
A=\(\dfrac{5}{8}\)x3y2 (-x2y2) [-\(\dfrac{3}{2}\)x2yz3 ]
\(A=-\dfrac{5}{8}x^5y^4\left(-\dfrac{3}{2}x^2yz^3\right)=\dfrac{15}{16}x^7y^5z^3\)
hệ số 15/16 ; biến x^7y^5z^3 ; bậc 15
\(A=\left[\dfrac{5}{8}.\left(-1\right).\dfrac{-3}{2}\right].\left(x^3.x^2.x^2\right).\left(y^2.y^2.y\right).z^3\)
\(A=\dfrac{15}{16}x^7y^5z^3\)
Hệ số là: \(\dfrac{15}{16}\)
Phần biến là: \(x^7y^5z^3\)
Bậc của đơn thức là: 7+5+3 = 15
Cho 3 số dương x,y,z. Tìm giá trị nhỏ nhất của biểu thức
\(P=\dfrac{xz}{y^2+yz}+\dfrac{y^2}{xz+yz}+\dfrac{\sqrt{x}+\sqrt{y}}{2\sqrt{x}}\)
Phân tích đa thức thành nhân tử :
a. \(\dfrac{1}{2}x^2-2y^2\)
b. \(\dfrac{1}{3}xy+x^2z+xz\)
c. \(18x^3-\dfrac{8}{25}x\)
d. \(\dfrac{2}{5}x^2+5x^3+x^2y\)
Lời giải:
a.
$=\frac{1}{2}(x^2-4y^2)=\frac{1}{2}[x^2-(2y)^2]=\frac{1}{2}(x-2y)(x+2y)$
b.
$=\frac{1}{3}x(y+3xz+3z)$
c.
$=\frac{2}{25}x(225x^2-4)=\frac{2}{25}(15x-2)(15x+2)$
d.
$=\frac{1}{5}x^2(2+25x+5y)$
Phân tích đa thức thành nhân tử :
a. \(\dfrac{1}{2}x^2-2y^2\)
b. \(\dfrac{1}{3}xy+x^2z+xz\)
c. \(18x^3-\dfrac{8}{25}x\)
d. \(\dfrac{2}{5}x^2+5x^3+x^2y\)
e. \(\dfrac{1}{2}\left(x^2+y^2\right)^2-2x^2y^2\)
f. \(27x^3-\dfrac{1}{8}y^3\)
Cho ba đơn thức:\(M=\frac{2}{3}\left(xz\right)^3\left(-\frac{1}{2}yz\right)^2;N=-\frac{3}{4}\left(xz\right)^2yz;P=\frac{4}{5}xy^5z^2\).chứng minh rằng 3 đơn thức đã cho ko cùng nhận giá trị dương