Cho hình bên, biết:
\(\widehat{ADE} = \widehat{MAD}+\widehat{DEN};\)
\(\widehat{MAB}+\widehat{ABC}+\widehat{BCP}=360º.\)
Chứng minh: EN // CP.
1.Cho hình 16:
a) Cho biết \(Ax//Cy.So\) \(sánh \)\(\widehat{ABC}\) với \(\widehat{A}\) và \(\widehat{C}\)
b) Cho biết \(\widehat{ABC}\)=\(\widehat{A}\) và\(\widehat{C}\) . Chứng tỏ rằng \(Ax//\) Cy
Trong hình vẽ bên , cho biết \(\widehat{A}+\widehat{B}+\widehat{C}=360^0\) chứng minh Ax // Cy
Kẻ Bz // Ax
Bz // Cy
ta có Ax // Bz//Cy=>Ax//Cy (đpcm)
Ta có hình vẽ:
Kẻ tia Bz nằm trong góc ABC sao cho Ax // Bz
Ta có: BAx + ABz = 180o (trong cùng phía)
ABz + CBz = ABC
Lại có: BAx + ABC + BCy = 360o (gt)
=> BAx + ABz + CBz + BCy = 360o
=> 180o + CBz + BCy = 360o
=> CBz + BCy = 360o - 180o
=> CBz + BCy = 180o
Mà CBz và BCy là 2 góc trong cùng phía
=> Bz // Cy
Mà Ax // Bz
=> Bz // Cy (đpcm)
a) Trong Hình 21a, cho biết \(\widehat {HOP} = \widehat {HPE},\widehat {HPO} = \widehat {HEP},OH = 6cm\) và \(HE = 4cm\). Tính độ dài đoạn thẳng \(HP\).
b) Trong Hình 21b, cho biết \(\widehat {AME} = \widehat {AFM}\). Chứng minh rằng \(A{M^2} = AE.AF\).
a) Xét tam giác \(OPH\) tam giác \(PEH\) ta có:
\(\widehat {HOP} = \widehat {HPE}\) (giả thuyết)
\(\widehat {OPH} = \widehat {PEH}\) (giả thuyết)
Do đó, \(\Delta OPH\backsim\Delta PEH\) (g.g)
Suy ra, \(\frac{{PH}}{{EH}} = \frac{{OH}}{{PH}} \Rightarrow P{H^2} = OH.EH = 4.6 \Rightarrow P{H^2} = 24 \Leftrightarrow PH = \sqrt {24} = 2\sqrt 6 \).
Vậy \(PH = 2\sqrt 6 \).
b) Xét tam giác \(AME\) tam giác \(AFM\) ta có:
\(\widehat {AME} = \widehat {AFM}\) (giả thuyết)
\(\widehat A\) chung
Do đó, \(\Delta AME\backsim\Delta AFM\) (g.g)
Suy ra, \(\frac{{AM}}{{AF}} = \frac{{AE}}{{AM}} \Rightarrow A{M^2} = AF.AE\) (điều phải chứng minh).
Cho hình thang vuông ABCD (AB // CD, \(\widehat{A}=90\) độ). Gọi M là trung điểm của cạnh BC. C/minh:
a, \(\Delta MAD\) là tam giác cân
b, \(\widehat{MAB}=\widehat{MDC}\)
1. Cho hình vẽ, biết AD//BC. \(\widehat{A}\)= 90. \(\widehat{D}\)=800. Số đo các \(\widehat{ABC}\)và \(\widehat{BCD}\)là:......
2. Cho hình vẽ. Điều kiện nào thì a//b:
3. Cho hình vẽ. Kết luận nào sau đây là sai?
a. \(\widehat{O_1=\widehat{O_3}}\) b. \(\widehat{O_2=\widehat{O_1}}\)
c.\(\widehat{O_2}\)= 870 d. \(\widehat{O_1}\)=870
Hình em sẽ trả lời bên dưới nha! nhanh lên em cần gấp lắm, đợi em vẽ hình nhé!
1. Vì đường thẳng A \(\perp\) với đường thẳng B
\(\Rightarrow\widehat{ABC}=90^o\)
Vì \(\widehat{C}\) và \(\widehat{D}\)là hai góc so le trong
\(\Rightarrow\widehat{C}=\widehat{D}=80^o\)
Vì \(\widehat{C}\)và \(\widehat{BCD}\)kề bù
\(\Rightarrow\widehat{C}+\widehat{BCD}=180^o\)
Mà \(\widehat{C}=80^o\)
\(\Rightarrow80^o+\widehat{BCD}=180^o\)
\(\Rightarrow\widehat{BCD}=180^o-80^o=100^o\)
2. Để a // b thì:
- Một cặp góc so le trong (ví dụ \(\widehat{A3}\)và\(\widehat{B3}\)) bằng nhau
- Hoặc một cặp góc đồng vị (VD \(\widehat{A1}\)và \(\widehat{B1}\)) bằng nhau
- Hoặc một cặp trong cùng phía (VD \(\widehat{A2}\)và\(\widehat{B3}\)) bù nhau (có tổng số đo = 180o )
Cho hình vẽ, biết rằng CD//Ey
\(\widehat{BAx}\)= 1400 , \(\widehat{ABD}\)= 400 , \(\widehat{BEy}\)= 1300
a, tính \(\widehat{CBE}\) ?
b, chứng minh Ax // Ey
c, chứng minh AB\(\perp\)BE thêm vào hình vẽ: \(\widehat{B_1}\)= 400, \(\widehat{A_1}\)= 1400 , \(\widehat{E_1}\)= 1300
A x y E B C D
a) Ta có: CD//Ey
\(\Rightarrow\widehat{CBE}=\widehat{E_1}=130^0\)(so le trong)
b) Ta có: Ta có: CD//Ey
\(\Rightarrow\widehat{EBD}+\widehat{E_1}=180^0\)(trong cùng phía)
\(\Rightarrow\widehat{EBD}=180^0-\widehat{E_1}=50^0\)
Ta có: \(\widehat{EBD}+\widehat{B_1}=50^0+40^0=90^0\)
=> AB⊥BE
Hình 22 cho biết a // b và \(\widehat{A}_4\) = \(37^o\) .
a) Tính \(\widehat{B_1}\) .
b) So sánh \(\widehat{A_1}\) và \(\widehat{B_4}\) .
c) Tính \(\widehat{B_2}\)
Quan sát Hình 14.
a) Tìm các góc kề với \(\widehat {xOy}\).
b) Tìm số đo của \(\widehat {tOz}\) nếu cho biết \(\widehat {xOy} = 20^\circ ;\widehat {xOt} = 90^\circ ;\widehat {yOz} = \widehat {tOz}\).
a) Các góc kề với \(\widehat {xOy}\) là: \(\widehat {yOz};\widehat {yOt}\)
b) Ta có:
\(\begin{array}{l}\widehat {xOy} + \widehat {yOz} + \widehat {zOt} = \widehat {xOt}\\ \Rightarrow 20^\circ + \widehat {zOt} + \widehat {zOt} = 90^\circ \\ \Rightarrow 2.\widehat {zOt} = 90^\circ - 20^\circ = 70^\circ \\ \Rightarrow \widehat {zOt} = 70^\circ :2 = 35^\circ \end{array}\)
1. Cho hình vẽ , biết a // b ; \(\widehat{ACB}\) = 37'( độ ) , \(\widehat{D_1}\) = 45'( độ ) . Tính \(\widehat{ABC}\) , \(\widehat{AED}\)
1. Cho hình vẽ , biết a // b ; \(\widehat{ACB}\) = 37'( độ ) , \(\widehat{D_1}\) = 45'( độ ) . Tính \(\widehat{ABC}\) , \(\widehat{AED}\)