Bài 1: Sự xác định đường tròn. Tính chất đối xứng của đường tròn

Akai Haruma
12 tháng 7 lúc 11:16

Lời giải:

Qua $P$ kẻ dây cung $AB$. Kẻ $OH\perp AB$ thì $H$ là trung điểm $AB$

Theo định lý Pitago:

$AB=2AH=2\sqrt{OA^2-OH^2}=2\sqrt{R^2-OH^2}$

$AB\leq 2\sqrt{R^2}=2R$. 

Vậy $AB_{\max}=2R$ khi $OH=0$ hay dây cung $AB$ đi qua điểm $O$ và $P$.

Lại có:
$AB=2\sqrt{R^2-OH^2}\geq 2\sqrt{R^2-OP^2}$

Vậy $AB_{\min}=2\sqrt{R^2-OP^2}$ khi $P\equiv H$ hay $P$ là trung điểm của dây cung $AB$.

Bình luận (0)
Akai Haruma
12 tháng 7 lúc 11:18

Hình vẽ:

Bình luận (0)

b) Ta có: CH\(\perp\)AB(gt)

BK\(\perp\)AB(ΔABK vuông tại B)

Do đó: CH//BK(Định lí 1 từ vuông góc tới song song)

Ta có: BH\(\perp\)AC(gt)

CK\(\perp\)AC(ΔACK vuông tại C)

Do đó: BH//CK(Định lí 1 từ vuông góc tới song song)

Xét tứ giác BHCK có 

CH//BK(cmt)

BH//CK(cmt)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Bình luận (0)

a) Xét (O) có 

ΔABK nội tiếp đường tròn(A,B,K∈(O))

AK là đường kính(gt)

Do đó: ΔABK vuông tại B(Định lí)

Xét (O) có

ΔACK nội tiếp đường tròn(A,C,K∈(O))

AK là đường kính(gt)

Do đó: ΔACK vuông tại C(Định lí)

Bình luận (0)

a) Xét tứ giác AMHN có

\(\widehat{AMH}\) và \(\widehat{ANH}\) là hai góc đối

\(\widehat{AMH}+\widehat{ANH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AMHN là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

⇔A,H,M,N cùng thuộc một đường tròn(đpcm)

⇔A,H,M,N∈(O)

Ta có: ΔANH vuông tại N(HN⊥AC tại N)

nên N nằm trên đường tròn đường kính AH(Định lí tam giác vuông)(1)

Ta có: ΔAMH vuông tại M(MH⊥AB tại M)

nên M nằm trên đường tròn đường kính AH(Định lí tam giác vuông)(2)

Từ (1) và (2) suy ra M,N cùng thuộc đường tròn đường kính AH

⇔M,N,A,H cùng thuộc đường tròn đường kính AH

mà M,N,A,H∈(O)(cmt)

nên AH là đường kính của (O)

hay O là trung điểm của AH

Bình luận (0)

a) Xét (O) có 

DB là tiếp tuyến có B là tiếp điểm(gt)

DC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: DB=DC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: DB=DC(cmt)

nên D nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OD là đường trung trực của BC

hay OD\(\perp\)BC(đpcm)

b) Xét (O) có 

ΔEAB nội tiếp đường tròn(E,A,B cùng thuộc đường tròn (O))

AB là đường kính(gt)

Do đó: ΔEAB vuông tại E(Định lí)

\(\Leftrightarrow\)BE\(\perp\)AE tại E

hay BE\(\perp\)DA

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDBA vuông tại B có BE là đường cao ứng với cạnh huyền DA, ta được:

\(DE\cdot DA=DB^2\)(1)

Ta có: DO\(\perp\)BC(cmt)

mà DO cắt BC tại F(gt)

nên BF\(\perp\)DO tại F

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDBO vuông tại B có BF là đường cao ứng với cạnh huyền DO, ta được:

\(DF\cdot DO=DB^2\)(2)

Từ (1) và (2) suy ra \(DF\cdot DO=DE\cdot DA\)(đpcm)

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN