Bài 3: Rút gọn phân thức

Lê Thị Thục Hiền
8 tháng 6 lúc 13:19

a)Đk:\(x\ne4\)

\(\dfrac{x^4}{4-x}+x^3+1=\dfrac{x^4+\left(x^3+1\right)\left(4-x\right)}{4-x}\)\(=\dfrac{x^4+\left(-x^4+4x^3+4-x\right)}{4-x}=\dfrac{4x^3-x+4}{4-x}\)

b) Đk: \(x\ne0;x\ne1\)

\(\dfrac{1}{x^2-x}+\dfrac{2x}{x-1}=\dfrac{1}{x\left(x-1\right)}+\dfrac{2x^2}{x\left(x-1\right)}=\dfrac{1+2x^2}{x\left(x-1\right)}\)

Bình luận (0)
Yeutoanhoc
11 tháng 5 lúc 17:16

`(x-4)/(x-3)-5/(3+x)=-27/(9-x^2)(x ne +-3)`

`<=>(x-4)/(x-3)-5/(x+3)-27/(x^2-9)=0`

`<=>(x-4)(x+3)-5(x-3)-27=0`

`<=>x^2-x-12-5x+15-27=0`

`<=>x^2-6x-16=0`

`<=>x^2+2x-8x-16=0`

`<=>(x+2)(x-8)=0`

`<=>x=-2\or\x=8`

`S={-2,8}`

Bình luận (2)
Trúc Giang
21 tháng 4 lúc 16:24

\(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\) (1)

Mà: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) 

Nên PT (1) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\)

=> a = b = c

\(P=\left(a-b\right)^{2020}+\left(b-c\right)^{2021}+\left(c-a\right)^{2022}\)

\(=\left(a-a\right)^{2020}+\left(b-b\right)^{2021}+\left(c-c\right)^{2022}\)

= 0

 

Bình luận (0)
gãi hộ cái đít
17 tháng 4 lúc 23:02

Gọi chữ số hàng chục là x( \(x\in N\)* , \(x\le9\))

=> chữ số hàng đơn vị là: x+2

Theo bài ra, ta có pt:

\(\dfrac{x}{x+2}=\dfrac{3}{4}\Leftrightarrow4x=3\left(x+2\right)\Leftrightarrow4x=3x+6\Leftrightarrow x=6\)

=> chữ số hàng đơn vj là 6+2=8

Vậy số đã cho là 68

Bình luận (0)
gãi hộ cái đít
17 tháng 4 lúc 22:33

Ta có:

\(VT=\left[\dfrac{16a-a^2-\left(3+2a\right)\left(a+2\right)-\left(2-3a\right)\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}\right]:\dfrac{a-1}{a^3+4a^2+4a}\)

\(=\dfrac{16a-a^2-3a-6-2a^2-4a-2a+4+3a^2-6a}{\left(a-2\right)\left(a+2\right)}.\dfrac{a\left(a+2\right)^2}{a-1}\)

\(=\dfrac{a-2}{\left(a-2\right)\left(a+2\right)}.\dfrac{a\left(a+2\right)^2}{a-1}=\dfrac{a\left(a+2\right)}{a-1}\left(a\ne\pm2;a\ne1\right)\)

\(=a-\dfrac{a\left(a+2\right)}{a-1}=\dfrac{a^2-a-a^2-2a}{-1}=\dfrac{-3a}{a-1}=\dfrac{3a}{1-a}=VP\left(đpcm\right)\)

Bình luận (0)
んuリ イ ( ✎﹏IDΣΛ亗 )
17 tháng 4 lúc 22:27

\(\left(\dfrac{\dfrac{x}{x+1}}{\dfrac{x^2}{x^2+x+1}}-\dfrac{2x+1}{x^2+x}\right)\dfrac{x^2-1}{x-1}\)ĐK : \(x\ne\pm1\)

\(=\left(\dfrac{x}{x+1}.\dfrac{x^2+x+1}{x^2}-\dfrac{2x+1}{x\left(x+1\right)}\right)\left(x+1\right)=\left(\dfrac{x^2+x-1}{x^2+x}-\dfrac{2x+1}{x\left(x+1\right)}\right)\left(x+1\right)\)

\(=\left(\dfrac{x^2+x-1-2x-1}{x\left(x+1\right)}\right)\left(x+1\right)=\dfrac{x^2-3x-2}{x}\)

Bình luận (0)
んuリ イ ( ✎﹏IDΣΛ亗 )
17 tháng 4 lúc 22:32

à xin lỗi mình nhầm dòng cuối 

\(=\dfrac{x^2-x-2}{x}=\dfrac{\left(x+1\right)\left(x-2\right)}{x}\)

Để biểu thức trên nhận giá trị dương khi 

\(\dfrac{\left(x+1\right)\left(x-2\right)}{x}>0\)bạn tự xét TH cả tử và mẫu nhé, mình đánh trên này bị lỗi 

 

 

Bình luận (0)
んuリ イ ( ✎﹏IDΣΛ亗 )
17 tháng 4 lúc 22:22

\(A=\left(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)ĐK : \(x\ne-2;2\)

\(=\left(\dfrac{x}{x-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left(\dfrac{x^2-4+10-x^2}{x+2}\right)\)

\(=\left(\dfrac{x}{x-4}+\dfrac{2x+4+2-x}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{6}{x+2}\right)=\left(\dfrac{x}{x-4}+\dfrac{x+6}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{6}{x+2}\right)\)

\(=\left(\dfrac{x\left(x^2-4\right)+\left(x+6\right)\left(x-4\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}\right):\dfrac{6}{x+2}\)

\(=\dfrac{x^3-4x+x^2-2x+24}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}:\dfrac{6}{x+2}=\dfrac{x^3+x^2-6x+24}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}.\dfrac{x+2}{6}\)

\(=\dfrac{x^3+x^2-6x+24}{6\left(x-4\right)\left(x-2\right)}=\dfrac{\left(x+4\right)\left(x^2-3x+6\right)}{6\left(x-4\right)\left(x-2\right)}\)

Bình luận (0)
んuリ イ ( ✎﹏IDΣΛ亗 )
17 tháng 4 lúc 22:23

P/s : mình thấy đề này cứ sai sai ở đâu ý ! 

b, Ta có : \(\dfrac{\left(x+4\right)\left(x^2-3x+6\right)}{6\left(x-4\right)\left(x-2\right)}=2\)

\(\Leftrightarrow\dfrac{\left(x+4\right)\left(x^2-3x+6\right)-12\left(x-4\right)\left(x-2\right)}{6\left(x-4\right)\left(x-2\right)}=0\)

\(\Rightarrow x^3-11x^2+66x-72=0\)

Bình luận (0)

Ta có: \(\dfrac{x^2+xy}{x^2+xy+y^2}-\left(\dfrac{x\left(2x^2+xy-y^2\right)}{x^3-y^3}-2+\dfrac{y}{y-x}\right):\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x^2+xy}{x^2+xy+y^2}-\left(\dfrac{x\left(2x^2+xy-y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{2\left(x^3-y^3\right)-y\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\right):\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x^2+xy}{x^2+xy+y^2}-\dfrac{2x^3+x^2y-xy^2-2x^3+2y^3-x^2y-xy^2-y^3}{\left(x-y\right)\left(x^2+xy+y^2\right)}:\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}-\dfrac{y^3-2xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}:\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}+\dfrac{y^2\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\cdot\dfrac{x}{x-y}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}+\dfrac{xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x^2-y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{x\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^3-xy^2+xy^2-x^3-x^2y-xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{-x^2y-xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN