Violympic toán 9

Curry

GHPT: \(\left\{{}\begin{matrix}\left(x+y\right)^2=2xy\left(xy+1\right)\\\left(x+y\right)\left(1+xy\right)=2\left(x^2+y^2\right)\end{matrix}\right.\)

Akai Haruma
Akai Haruma Giáo viên 30 tháng 5 2020 lúc 10:36

Lời giải:

Ký hiệu 2PT trong hệ là PT$(1)$ và $(2)$:

HPT \(\Leftrightarrow \left\{\begin{matrix} x^2+y^2=2(xy)^2\\ (x+y)(1+xy)=2(x^2+y^2)\end{matrix}\right.\Rightarrow 4(xy)^2=(x+y)(1+xy)\)

\(\Rightarrow 16(xy)^4=(x+y)^2(1+xy)^2\)

Nếu $xy+1=0\Rightarrow xy=-1$

$4x^2y^2=(x+y)(xy+1)=0\Rightarrow xy=0$ ( mâu thuẫn với $xy=-1$)

Do đó $xy+1\neq 0$

$(1)\Leftrightarrow (x+y)^2(xy+1)^2=2xy(xy+1)^3$

$\Leftrightarrow 16x^4y^4=2xy(xy+1)^3$

$\Leftrightarrow 2xy[(2xy)^3-(xy+1)^3]=0$ Nếu $xy=0$ thì từ $(1)\Rightarrow x+y=0$

$\Rightarrow x=y=0$. Thử lại thấy thỏa mãn.

Nếu $(2xy)^3-(xy+1)^3=0$

$\Rightarrow 2xy=xy+1\Rightarrow xy=1$

Thay vào PT $(1)\Rightarrow (x+y)^2=2xy.2=4xy$

$\Leftrightarrow (x-y)^2=0\Rightarrow x=y$

$\Rightarrow x=y=1$

Vậy HPT có nghiệm $(x,y)=(0,0); (1,1)$

Bình luận (0)

Các câu hỏi tương tự

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN