HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho số thực a khác 0 và b thay đổi nhưng thỏa 2a+b=4ac. C/m biểu thức \(Q=\frac{a}{b}+\frac{b}{4a}-4ab\) là hằng số
Số c là số gì vậy bạn?
Cho a,b,c là các số thực dương thay đổi .Tìm GTNN của biểu thức:
\(P=\left(\frac{a}{a+b}\right)^2+\left(\frac{b}{b+c}\right)^2+\frac{c}{4a}\)
Cho các số thực dương a,b,c thay đổi thỏa mãn a+b+c=3
Tìm GTNN của biểu thức
\(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
Cho a,b là 2 số thay đổi thỏa mãn điều kiện a>0 và \(a+b\ge1\).Tìm giá trị nhỏ nhất của biểu thức A=\(\frac{8a^2+b}{4a}+b^2\)
Cho các số thực a,b,c thay đổi thỏa mãn điều kiện: \(\left\{{}\begin{matrix}a,b,c>0\\abc=1\end{matrix}\right.\)
Chứng minh rằng:
\(A=\frac{a^4b}{a^2+1}+\frac{b^4c}{b^1+1}+\frac{c^4a}{c^2+1}\ge\frac{3}{2}\)