Chương I - Căn bậc hai. Căn bậc ba

Trịnh Bá Vương Toàn

- Cho a,b,c là các số thực dương thoả mãn \(a\sqrt{32\left(b^2+c^2\right)}+\left(b+c\right)^2=12\)

Chứng minh : \(\frac{a^3}{b+3\sqrt{bc}}+\frac{b^3}{c+3\sqrt{ca}}+\frac{c^3}{a+3\sqrt{ca}}\ge\frac{3}{4}\)

- Giải phương trình sau: \(2x^3-x^2+\sqrt[3]{2x^3-3x+1}=3x+1+\sqrt[3]{x^2+2}\)

Hoàng Thị Ánh Phương
11 tháng 3 2020 lúc 21:26

Ta có : \(a\sqrt{32\left(b^2+c^2\right)}=2.2a\sqrt{2\left(b^2+c^2\right)}\le4a^2+2\left(b^2+c^2\right)\)

\(\left(b+c\right)^2\le2\left(b^2+c^2\right)\)

\(\Rightarrow12\le4\left(a^2+b^2+c^2\right)\Rightarrow a^2+b^2+c^2\ge3\)

Ngoài ra \(a\sqrt{\left(16+16\right)\left(b^2+b^2\right)}\ge a\left(4a+4b\right)\)

\(\left(b+c\right)^2\ge4bc\)

\(\Rightarrow ab+bc+ac\le3\)

\(VT=\frac{a^4}{ab+3a\sqrt{bc}}+\frac{b^4}{bc+3b\sqrt{ca}}+\frac{c^4}{ac+3c\sqrt{ba}}\)

\(\ge\frac{a^4}{ab+\frac{3}{2}\left(a^2+bc\right)}+\frac{b^4}{bc+\frac{3}{2}\left(b^2+ac\right)}+\frac{c^4}{ac+\frac{3}{2}\left(c^2+ab\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\frac{3}{2}\left(a^2+b^2+c^2\right)+\frac{5}{2}\left(ab+bc+ac\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\frac{3}{2}\left(a^2+b^2+c^2\right)+\frac{15}{2}}\)

Xét VT \(\ge\frac{3}{4}\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\frac{9}{8}\left(a^2+b^2+c^2\right)+\frac{45}{8}\)

\(\Leftrightarrow\left(a^2+b^2+c^2-3\right)+\left(a^2+b^2+c^2+\frac{15}{8}\right)\ge0\) ( luôn đúng với \(a^2+b^2+c^2\ge3\) )

\(\Rightarrowđpcm\)

Dấu " = " xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
Luân Đào
Xem chi tiết
ank viet
Xem chi tiết
Ánh Dương
Xem chi tiết
Đào Ngọc Quý
Xem chi tiết
Lê Lan Hương
Xem chi tiết
Nguyễn Kiều Anh
Xem chi tiết
Huyền Phạm
Xem chi tiết
Chiều Nguyễn
Xem chi tiết
Ánh Dương
Xem chi tiết