Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

poppy Trang

giải hệ phương trình:

1, \(\left\{{}\begin{matrix}x^3+2y^2=x^2y+2xy\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}2\sqrt{x+y^2+y+3}-3\sqrt{y}=\sqrt{x+2}\\y^3+y^2-3y-5=3x-3\sqrt[3]{x}+2\end{matrix}\right.\)

3, \(\left\{{}\begin{matrix}\left(x-2\right)\left(2y-1\right)=x^3+20y-28\\2\left(\sqrt{x+2y}+y\right)=x^2+x\end{matrix}\right.\)

Nguyễn Thành Trương
26 tháng 1 2020 lúc 11:11

Câu 1.

Điều kiện: \(x^2\ge2y+1\)

Từ $(1)$ ta được \(\left(x^2-2y\right)\left(x-y\right)=0\Leftrightarrow\left[{}\begin{matrix}x^2=2y\left(L\right)\\x=y\end{matrix}\right.\)

Khi đó $(2)$ \(\Leftrightarrow2\sqrt{x^2-2x-1}+\sqrt[3]{x^3-14}=x-2\Leftrightarrow2\sqrt{x^2-2x-1}+\sqrt[3]{x^3-14}-\left(x-2\right)=0\)

\(\begin{array}{l} \Leftrightarrow 2\sqrt {{x^2} - 2x - 1} + \dfrac{{{x^3} - 14 - {{\left( {x - 2} \right)}^3}}}{{\sqrt[3]{{{{\left( {{x^3} - 14} \right)}^2}}} + \sqrt[3]{{\left( {{x^3} - 14} \right)}}\left( {x - 2} \right) + {{\left( {x - 2} \right)}^2}}} = 0\\ \Leftrightarrow 2\sqrt {{x^2} - 2x + 1} + \dfrac{{6{x^2} - 12x - 6}}{{\sqrt[3]{{{{\left( {{x^3} - 14} \right)}^2}}} + \sqrt[3]{{\left( {{x^3} - 14} \right)}}\left( {x - 2} \right){{\left( {x - 2} \right)}^2}}} = 0\\ \Leftrightarrow 2\sqrt {{x^2} - 2x + 1} \left[ {1 + \dfrac{{3\sqrt {{x^2} - 2x - 1} }}{{\sqrt[3]{{{{\left( {{x^3} - 14} \right)}^2}}} + \sqrt[3]{{\left( {{x^3} - 14} \right)}}\left( {x - 2} \right){{\left( {x - 2} \right)}^2}}}} \right] = 0 \Leftrightarrow \sqrt {{x^2} - 2x - 1} = 0 \end{array} \)

Từ đó ta được \(x^2-2x-1=0\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{2}\Rightarrow y=1+\sqrt{2}\\x=1-\sqrt{2}\Rightarrow y=1-\sqrt{2}\end{matrix}\right.\)

Vậy hệ phương trình đã cho có nghiệm $(x;y)=$\(\left\{\left(1+\sqrt{2};1+\sqrt{2}\right),\left(1-\sqrt{2};1-\sqrt{2}\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Thành Trương
26 tháng 1 2020 lúc 18:24

Câu 2.

Điều kiện: \(y \ge 0,x \ge -2\)

Từ phương trình $(1)$ tương đương:

$$2\sqrt{x+y^2+y+3}=3\sqrt{y}+\sqrt{x+2}$$

Ta có:

$$3\sqrt y + \sqrt {x + 2} = \sqrt 3 .\sqrt {3y} + 1.\sqrt {x + 2} \le 2\sqrt {3y + x + 2}$$

Ta chứng minh:

$$2\sqrt {3y + x + 2} \le 2\sqrt {x + {y^2} + y + 3} \Leftrightarrow {\left( {y - 1} \right)^2} \ge 0$$

Đẳng thức xảy ra khi $y=1$ và \(\sqrt{y}=\sqrt{x+2}\Rightarrow x=-1\)

Thay vào phương trình $(2)$ thấy thỏa mãn.

Vậy nghiệm hệ phương trình $(x;y)=(-1;1)$

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Thành Trương
26 tháng 1 2020 lúc 18:34
Câu 3:

Phương trình thứ hai của hệ tương đương:

$$x + 2y + 2\sqrt {x + 2y} + 1 = {x^2} + 2x - 1 \Leftrightarrow {\left( {\sqrt {x + 2y} + 1} \right)^2} = {\left( {x + 1} \right)^2} \Leftrightarrow \left[ \begin{array}{l}
\sqrt {x + 2y} = x\\
\sqrt {x + 2y} = - x - 2
\end{array} \right.$$

$TH1:$ \(\sqrt{x+2y}=x\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\2y=x^2-x\end{matrix}\right.\) thay vào phương trình thứ nhất ta được \(13x^2-11x-30=0\)

\( \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} x = 2 \Rightarrow y = 0\\ x = 2 \Rightarrow - 3 \end{array} \right.\\ \left\{ \begin{array}{l} x = - \dfrac{{15}}{3} \Rightarrow y = 0\\ x = - \dfrac{{15}}{4} \Rightarrow y = 4 \end{array} \right. \end{array} \right.\)

$TH2:$ \(\sqrt{x+2y}=-x-2\Leftrightarrow\left\{{}\begin{matrix}x+2\le0\\2y=x^2+x+1\end{matrix}\right.\) thay vào phương trình thứ nhất ta được phương trình bậc hai theo $x$

Tự giải tiếp nhé!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
Đức Mai Văn
Xem chi tiết
Đức Mai Văn
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Trinh Tuyết Na
Xem chi tiết
Vũ Như Quỳnh
Xem chi tiết
poppy Trang
Xem chi tiết
Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết