§1. Bất đẳng thức

kudo shinichi

cho x , y , z > 0 \(x^2+y^2+z^2=1\)

CMR \(P=\frac{x}{y^2+z^2}+\frac{y}{x^2+z^2}+\frac{z^2}{x^2+y^2}\ge\frac{3\sqrt{3}}{2}\)

Akai Haruma
2 tháng 2 2020 lúc 20:04

Lời giải:

Ta thấy $\frac{x}{y^2+z^2}=\frac{x}{1-x^2}$

Ta sẽ chứng minh BĐT phụ sau:

$\frac{x}{1-x^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3x^2-1)$

$\Leftrightarrow x(\sqrt{3}x-1)^2(\sqrt{3}x+2)\geq 0$ (luôn đúng với mọi $x>0$

Hoàn toàn tương tự:

$\frac{y}{x^2+z^2}=\frac{y}{1-y^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3y^2-1)$

$\frac{z}{x^2+y^2}=\frac{z}{1-z^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3z^2-1)$

Cộng theo vế và thu gọn:

$P\geq \frac{3\sqrt{3}}{2}+\frac{\sqrt{3}}{2}.3(x^2+y^2+z^2-1)$

Hay $P\geq \frac{3\sqrt{3}}{2}$

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=\frac{1}{\sqrt{3}}$

Bình luận (0)
 Khách vãng lai đã xóa
Akai Haruma
7 tháng 2 2020 lúc 18:02

Lời giải:

Ta thấy $\frac{x}{y^2+z^2}=\frac{x}{1-x^2}$

Ta sẽ chứng minh BĐT phụ sau:

$\frac{x}{1-x^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3x^2-1)$

$\Leftrightarrow x(\sqrt{3}x-1)^2(\sqrt{3}x+2)\geq 0$ (luôn đúng với mọi $x>0$

Hoàn toàn tương tự:

$\frac{y}{x^2+z^2}=\frac{y}{1-y^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3y^2-1)$

$\frac{z}{x^2+y^2}=\frac{z}{1-z^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3z^2-1)$

Cộng theo vế và thu gọn:

$P\geq \frac{3\sqrt{3}}{2}+\frac{\sqrt{3}}{2}.3(x^2+y^2+z^2-1)$

Hay $P\geq \frac{3\sqrt{3}}{2}$

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=\frac{1}{\sqrt{3}}$

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Thùy Dương
Xem chi tiết
dbrby
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết
poppy Trang
Xem chi tiết
dbrby
Xem chi tiết
Đạt Trần Tiến
Xem chi tiết
Vũ Nguyễn Linh Chi
Xem chi tiết
Anhh Thưư
Xem chi tiết
Sengoku
Xem chi tiết