Violympic toán 9

Phạm Băng Băng

Cho x, y,z là 3 số thực dương thoả mãn đk xyz=1

Chmr: \(\frac{1}{1+x^3+y^3}+\frac{1}{1+y^3+z^3}+\frac{1}{1+z^3+x^3}\le1\)

tthnew
8 tháng 11 2019 lúc 7:58

Bài này đăng nhiều trên diễn đàn và em cũng làm nhiều rồi. Nhưng thôi kệ, cứ nhai lại vậy:v

Chú ý BĐT: \(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (đúng với x, y là các số thực dương)

Do đó \(VT\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{zx\left(z+x\right)+xyz}\)

\(=\frac{1}{x+y+z}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\frac{1}{xyz}=1\)

Đẳng thức xảy ra khi \(x=y=z=1\)

Bình luận (0)
 Khách vãng lai đã xóa
tthnew
8 tháng 11 2019 lúc 8:10

Còn bác nào thích trâu bò thì chơi kiểu này:D

\(BĐT\Leftrightarrow\frac{x^3+y^3}{x^3+y^3+1}+\frac{y^3+z^3}{y^3+z^3+1}+\frac{z^3+x^3}{z^3+x^3+1}\ge2\)

Thật vậy, áp dụng BĐT Cauchy-Schwarz:

\(VT\ge\frac{\left(\Sigma_{cyc}\sqrt{x^3+y^3}\right)^2}{2\left(x^3+y^3+z^3\right)+3}=\frac{2\left(x^3+y^3+z^3\right)+2\Sigma_{cyc}\sqrt{\left(x^3+y^3\right)\left(y^3+z^3\right)}}{2\left(x^3+y^3+z^3\right)+3}\)(*)

Ta sẽ chứng minh: \(\Sigma_{cyc}\sqrt{\left(x^3+y^3\right)\left(z^3+y^3\right)}\ge\left(x^3+y^3+z^3\right)+3\)(1)

Áp dụng BĐT Bunyakovski: \(VT\ge x^3+y^3+z^3+\sqrt{x^3y^3}+\sqrt{y^3z^3}+\sqrt{z^3x^3}\)

\(\ge x^3+y^3+z^3+3\sqrt[6]{\left(xyz\right)^6}=x^3+y^3+z^3+3\)

Vậy (1) đúng. Thay vào (*) ta có đpcm.

Is that true?

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
Alice Grade
Xem chi tiết
vvvvvvvv
Xem chi tiết
Clgt
Xem chi tiết
Alice Grade
Xem chi tiết
Clgt
Xem chi tiết
Lê Đình Quân
Xem chi tiết
Nguyễn Thị Ngọc Hân
Xem chi tiết
Thiếu gia
Xem chi tiết
Phác Chí Mẫn
Xem chi tiết