Violympic toán 9

Nguyễn Thanh Hiền

Cho các số thực a, b, c. Chứng minh rằng:

\(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a+b+c+1\right)^2\)

tthnew
1 tháng 9 2019 lúc 18:05

Akai Haruma em có cách khác:3 Cô check giúp em ạ.

Sử dụng nguyên lí Dirichlet ta có thể giả sử \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Rightarrow a^2b^2\ge a^2+b^2-1\)

Suy ra \(a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

Suy ra \(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge\left[\left(2a\right)^2+\left(2b\right)^2+2^2+2^2\right]\left(1+1+1+c^2\right)\)

\(\ge\left(2a+2b+2c+2\right)^2=4\left(a+b+c+1\right)^2\) (Bunyakovski)

Đẳng thức xảy ra khi a = b = c = 1

Ngắn quá:))

Bình luận (0)
Akai Haruma
31 tháng 8 2019 lúc 23:01

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((a^2+3)[1+\frac{1}{3}(b+c+1)^2]\geq (a+b+c+1)^2\)

\(\Leftrightarrow 4(a^2+3)[1+\frac{1}{3}(b+c+1)^2]\geq 4(a+b+c+1)^2\)

Để chứng minh được BĐT đã cho, ta chỉ cần chỉ ra:
\((b^2+3)(c^2+3)\geq 4[1+\frac{(b+c+1)^2}{3}]\)

\(\Leftrightarrow 3b^2c^2+5b^2+5c^2+11-8bc-8b-8c\geq 0\)

\(\Leftrightarrow 3(bc-1)^2+4(b-1)^2+4(c-1)^2+(b-c)^2\geq 0\) (luôn đúng)

Do đó ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

Bình luận (0)

Các câu hỏi tương tự
Yu gi Oh Magic
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Duyen Đao
Xem chi tiết
Nguyễn Xuân Đình Lực
Xem chi tiết
Vương Thiên Nhi
Xem chi tiết
Nguyễn Quang Định
Xem chi tiết
Nguyễn Thanh Hiền
Xem chi tiết
fghj
Xem chi tiết
Nguyễn Mai
Xem chi tiết