Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

dbrby

Cho x,y,z > 0 thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2017\)

Tìm GTNN của \(A=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)

Trần Thanh Phương
9 tháng 8 2019 lúc 21:04

Xét bất đẳng thức : \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

Áp dụng ta có :

\(2\left(y^2+z^2\right)\ge\left(y+z\right)^2\)

\(\Leftrightarrow\sqrt{2\left(y^2+z^2\right)}\ge y+z\)

\(\Leftrightarrow\frac{x^2}{y+z}\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)

Tương tự ta có \(\frac{y^2}{x+z}\ge\frac{y^2}{\sqrt{2\left(x^2+z^2\right)}};\frac{z^2}{x+y}\ge\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)

Cộng theo vế của 3 bđt ta được :

\(A\ge\Sigma\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x^2+y^2}\\b=\sqrt{y^2+z^2}\\c=\sqrt{z^2+x^2}\end{matrix}\right.\)

Khi đó :

+) \(a+b+c=2017\)

+) \(a^2+b^2-c^2=x^2+y^2+y^2+z^2-z^2-x^2=2y^2\)

\(\Leftrightarrow\frac{a^2+b^2-c^2}{2}=y^2\)

\(\)+) \(\sqrt{2\left(z^2+x^2\right)}=\sqrt{2}c\)

Do đó ta có \(A\ge\frac{a^2+b^2-c^2}{2\sqrt{2c}}+\frac{b^2+c^2-a^2}{2\sqrt{2}a}+\frac{a^2+c^2-b^2}{2\sqrt{2}b}\)

\(=\frac{1}{2\sqrt{2}}\left(\frac{a^2+b^2-c^2}{c}+\frac{b^2+c^2-a^2}{a}+\frac{a^2+c^2-b^2}{b}\right)\)

\(=\frac{1}{2\sqrt{2}}\left[\Sigma\left(\frac{\left(a+b\right)^2}{2c}-c\right)\right]\)

\(=\frac{1}{2\sqrt{2}}\left[\Sigma\left(\frac{\left(a+b\right)^2}{2c}+2c-3c\right)\right]\ge\frac{1}{2\sqrt{2}}\left[\Sigma\left(2\left(a+b\right)-3c\right)\right]\)

\(=\frac{1}{2\sqrt{2}}\left(a+b+c\right)\)

\(=\frac{1}{2\sqrt{2}}\cdot2017=\frac{2017}{2\sqrt{2}}=\frac{2017\sqrt{2}}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=...\)

Bình luận (3)

Các câu hỏi tương tự
dbrby
Xem chi tiết
Lê Thị Ngọc Duyên
Xem chi tiết
Nguyễn Thành Trung
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Tâm Phạm
Xem chi tiết
Nguyễn Hồ Thúy Anh
Xem chi tiết
vvvvvvvv
Xem chi tiết
bùi thị mai
Xem chi tiết
lữ thị xuân nguyệt
Xem chi tiết