Violympic toán 9

Trần Thanh Phương

Câu 1: Giải phương trình :

\(\left(2\sqrt{x+2}+\sqrt{4x+1}\right)\left(2x+3+\sqrt{4x^2-9x+2}\right)=7\)

Câu 2: Tìm \(x;y\in Z\) biết \(2y\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\)

Câu 3: Cho \(a,b,c\) là các số hữu tỉ thỏa mãn \(\frac{1}{a+bc}+\frac{1}{b+ca}=\frac{1}{a+b}\). Chứng minh \(\frac{c-3}{c+1}\) là bình phương của một số hữu tỉ

Câu 4: Cho 3 số \(a,b,c\) thỏa mãn \(0\le a\le b\le c\le1\).

Tìm \(maxB=\left(a+b+c+3\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)

Trần Phúc Khang
17 tháng 7 2019 lúc 6:11

Câu 1:ĐkXĐ \(x\ge-\frac{1}{4}\)

\(\left(2\sqrt{x+2}-\sqrt{4x+1}\right)\left(2x+3+\sqrt{4x^2+9x+2}\right)=7\)(theo đề ở dưới)

Nhân liên hợp ta có

\(\left(4\left(x+2\right)-4x-1\right)\left(2x+3+\sqrt{4x^2+9x+2}\right)=7\left(2\sqrt{x+2}+\sqrt{4x+1}\right)\)<=>\(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\)(1)

Đặt \(2\sqrt{x+2}+\sqrt{4x+1}=t\left(t\ge0\right)\)

=> \(t^2=8x+9+4\sqrt{4x^2+9x+2}\)

=> \(\frac{t^2-8x-9}{4}=\sqrt{4x^2+9x+2}\)

Khi đó (1)

<=> \(2x+3+\frac{t^2-8x-9}{4}=t\)

<=> \(\frac{3}{4}+\frac{t^2}{4}=t\)

=> \(\left[{}\begin{matrix}t=1\\t=3\end{matrix}\right.\)(tm)

+ \(t=1\) => \(\sqrt{4x^2+9x+2}=-2x-2\)

\(x\ge-\frac{1}{4}\)

=> pt vô nghiệm

+ t=3 => \(\sqrt{4x^2+9x+2}=-2x\)

=> \(\left\{{}\begin{matrix}x\le0\\9x+2=0\end{matrix}\right.\)

=> \(x=-\frac{2}{9}\)(tmĐKXĐ)

Vậy x=-2/9

Bình luận (0)
Trần Phúc Khang
17 tháng 7 2019 lúc 6:20

Câu 3:

\(\frac{1}{a+bc}+\frac{1}{b+ac}=\frac{1}{a+b}\)

<=> \(\frac{\left(a+b\right)\left(c+1\right)}{\left(a+bc\right)\left(b+ac\right)}=\frac{1}{a+b}\)

<=> \(\left(a+b\right)^2\left(c+1\right)=ab\left(c^2+1\right)+c\left(a^2+b^2\right)\)

<=> \(2abc+a^2+b^2+ab=abc^2\)

<=> \(\left(a^2+b^2+2ba\right)=ab\left(c^2-2c+1\right)\)

<=> \(\left(a+b\right)^2=ab\left(c-1\right)^2\)

=> ab>0 , ab là bình phương của số hữu tỉ

=> \(c-1=\frac{a+b}{\sqrt{ab}}\)

=> \(c+1=\frac{a+b}{\sqrt{ab}}+2=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{ab}}\)

Khi đó

\(\frac{c-3}{c+1}=1-\frac{4}{c+1}=1-\frac{4\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)^2}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)

\(\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{a-b}=\frac{a+b-2\sqrt{ab}}{a-b}\)là số hữu tỉ do ab là bình phương của số hữu tỉ

=> \(\frac{c-3}{c+1}\)là bình phương của số hữu tỉ(ĐPCM)

Bình luận (2)
Trần Phúc Khang
17 tháng 7 2019 lúc 16:54

Câu 4 : Anh có cách này tạm được

Xét \(B\le10\)

Quy đồng chuyển vế ta có:\(\left(a+b+c+3\right)\left[\left(ab+bc+ac\right)+2\left(a+b+c\right)+3\right]\le10\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

<=>\(\Sigma a^2\left(b+c\right)+\Sigma2a^2+7\left(ab+bc+ac\right)+9\left(a+b+c\right)+9\le10\left(abc+\Sigma a+\Sigma ab+1\right)\)

<=> \(\Sigma a^2\left(b+c\right)+2\left(a^2+b^2+c^2\right)\le7abc+3\left(ab+bc+ac\right)+1+a+b+c\)

\(\left\{{}\begin{matrix}a^2\le a\\b^2\le b\\c^2\le c\end{matrix}\right.\)do \(0\le a,b,c\le1\)

=> \(a\left(b+c\right)+b\left(a+c\right)+c\left(a+b\right)+2\left(a+b+c\right)\le7abc+3\left(ab+bc+ac\right)+\Sigma a+1\)

<=> \(a+b+c\le7abc+ab+bc+ac+1\)

Lại có \(7abc\ge-abc\)

=> \(a+b+c\le-abc+ab+bc+ac+1\)

<=> \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)luôn đúng với mọi \(0\le a,b,c\le1\)

=> ĐPCM

Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}a^2=a\\b^2=b\\c^2=c\\\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\end{matrix}\right.\)

=> \(\left(a,b,c\right)=\left(1,1,0\right);\left(0,0,1\right),...\)và các hoán vị

Bình luận (2)
Trần Thanh Phương
15 tháng 7 2019 lúc 21:17

Akai Haruma tth svtkvtm Ace Legona Nguyễn Việt Lâm Hung nguyen

Thiên tài bơi hết vào đây nào :>

Bình luận (10)
Kiêm Hùng
15 tháng 7 2019 lúc 21:20

Bài thi cấp tỉnh 4 đ :))

Bình luận (4)

Các câu hỏi tương tự
bach nhac lam
Xem chi tiết
Kiều Ngọc Tú Anh
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
tràn thị trúc oanh
Xem chi tiết
Lê Thị Thục Hiền
Xem chi tiết
Lâm ngọc mai
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Nguyễn Đức Anh
Xem chi tiết