HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
giả hệ phương trình \(\left\{{}\begin{matrix}p-1=2x\left(x+2\right)\\p^2-1=2y\left(y+2\right)\end{matrix}\right.\) với p là số nguyên tố và x,y là số nguyên dương
Bạn tham khảo tại link sau:
Câu hỏi của Phuong Tran - Toán lớp 8 | Học trực tuyến
giải hệ phương trình \(\left\{{}\begin{matrix}2x\left(x-1\right)+\left(y-1\right)\left(2y+1\right)=0\\2y^2+2x+y+1=6xy\end{matrix}\right.\)
a) tìm số tự nhiên x và số nguyên y thỏa mãn: \(x^2y+2xy+x^2-2018x+y=-1\)
b) giải hệ phương trình \(\left\{{}\begin{matrix}x^2-2y^2+xy=2y-2x\\\sqrt{x+2y+1}+\sqrt{x^2+y+2}=4\end{matrix}\right.\)
Số nghiệm của hệ phương trình \(\left\{{}\begin{matrix}\left(2x-\left|y\right|-1\right)\left(x+2y-1\right)=0\\\left(2x-\left|y\right|-2\right)\left(x+2y-3\right)=0\end{matrix}\right.\)
Giải hệ phương trình sau :
a, \(\left\{{}\begin{matrix}\left(x^2+1\right)\left(y^2+1\right)=10\\\left(x+y\right)\left(xy-1\right)=3\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x^3-1=2y\\y^3-1=2x\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}2x^2+xy=3x\\2y^2+xy=3y\end{matrix}\right.\)