Violympic toán 9

I love English

1, Cho a,b các số thực khác 0. Chứng minh: \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

2, Cho x,y,z là các số thực khác 0 thỏa mãn: x+y+z+xy+yz+zx=6xyz.Tìm giá trị nhỏ nhất của biểu thức:

\(P=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Luân Đào
4 tháng 6 2019 lúc 10:41

1. Theo Cô si:
\(\frac{1}{a^2}+\frac{1}{b^2}\ge2\sqrt{\frac{1}{a^2b^2}}=2\cdot\frac{1}{ab}=\frac{2}{ab}\)

Dấu "=" khi a = b

2.

\(gt\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

\(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)\rightarrow\left(x,y,z\right)\)\(\Rightarrow\left\{{}\begin{matrix}P=x^2+y^2+z^2\\x+y+z+xy+yz+zx=6\end{matrix}\right.\)

Theo Cô si ta có:

\(x^2+1\ge2\sqrt{x^2}=2x\)

Tương tự ta được: \(\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z\right)\)(1)

Lại có: \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)(2)

Cộng (1), (2) theo vế ta được:

\(3P+3\ge2\left(x+y+z+xy+yz+zx\right)=12\)

\(\Rightarrow3P\ge9\Leftrightarrow P\ge3\)

Dấu "=" khi x = y = z = 1 hay a = b = c = 1

Bình luận (0)

Các câu hỏi tương tự
Văn Thắng Hồ
Xem chi tiết
fghj
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
le duc minh vuong
Xem chi tiết
Nguyễn Thị Hằng
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Khởi My
Xem chi tiết
Kakarot Songoku
Xem chi tiết
fghj
Xem chi tiết