Ôn tập phương trình bậc hai một ẩn

Đinh Doãn Nam

Bài 1:Cho a,b,c là các số dương thỏa mãn điều kiện:a+b+c+ab+bc+ca=9.chứng minh rằng

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\ge5\)

Bài 2: Tìm cặp số (x;y) thỏa mãn:

\(x+\sqrt{2-x^2}=4y^2+4y+3\)

Bài 3:Cho các số thực dương x;y;z thỏa mãn x+y+z=4.chứng minh rằng:

\(\frac{1}{xy}+\frac{1}{xz}\ge1\)

tthnew
3 tháng 6 2019 lúc 15:15

1/ Đầu tiên ta chứng minh: \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\) (1)

\(\Leftrightarrow\Sigma_{cyc}\left(\frac{a^3}{b}-a^2\right)\ge0\Leftrightarrow\Sigma_{cyc}\left(\frac{a^2\left(a-b\right)}{b}-a\left(a-b\right)\right)+\Sigma_{cyc}a\left(a-b\right)\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\frac{a\left(a-b\right)^2}{b}+\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\frac{a\left(a-b\right)^2}{b}+\Sigma_{cyc}\frac{1}{2}\left(a-b\right)^2\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\frac{\left(a-b\right)^2\left(2a+b\right)}{2b}\ge0\)

BĐT cuối đúng nên (1) đúng. (*)

Bây giờ ta đi chứng minh: \(a^2+b^2+c^2\ge5\)

Đặt \(\left(a+b+c;ab+bc+ca\right)\rightarrow\left(3u;3v^2\right)\) thì \(3u=9-3v^2\)

\(a^2+b^2+c^2=\left(3u\right)^2-6v^2=\left(9-3v^2\right)^2-6v^2\)

\(=\left(3v^2-9\right)^2-6v^2=9v^4-60v^2+81\)

Đặt \(v^2=t\ge0\) .Ta cần tìm min của: \(9t^2-60t+81\)

Ta có: \(9t^2-60t+81=\left(3t-10\right)^2-19\ge-19\)

Dấu "=" xảy ra khi t = 10/3 tức là v= \(\sqrt{\frac{10}{3}}\)....

Em thấy có gì đó sai sai thì phải ạ:((

Bình luận (0)
Nguyễn Việt Lâm
3 tháng 6 2019 lúc 18:12

Câu 1:

\(\frac{a^3}{b}+ab\ge2a^2\) ; \(\frac{b^3}{c}+bc\ge2b^2\); \(\frac{c^3}{a}+ac\ge2c^2\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}+ab+ac+bc\ge2\left(a^2+b^2+c^2\right)\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+ac+bc\right)\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(a^2+b^2+c^2\right)=a^2+b^2+c^2\)

//

\(a+b+c+ab+ac+bc\le a+b+c+\frac{\left(a+b+c\right)^2}{3}\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{3}+\left(a+b+c\right)\ge9\)

\(\Rightarrow\left(a+b+c-\frac{3\sqrt{13}-3}{2}\right)\left(a+b+c+\frac{3\sqrt{13}+3}{2}\right)\ge0\)

\(\Rightarrow a+b+c\ge\frac{3\sqrt{13}-3}{2}\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\ge\frac{1}{3}\left(\frac{3\sqrt{13}-3}{2}\right)^2=\frac{21-3\sqrt{13}}{2}>5\)

\(\Rightarrow a^2+b^2+c^2>5\)

Dấu "=" ko xảy ra

Bình luận (0)
Nguyễn Việt Lâm
3 tháng 6 2019 lúc 18:14

Bài 2:

Ta có: \(VT^2=\left(x+\sqrt{2-x}\right)^2\le2\left(x^2+2-x^2\right)=4\)

\(\Rightarrow VT\le2\)

\(VP=4y^2+4y+1+2=\left(2y+1\right)^2+2\ge2\)

\(\Rightarrow VT\le VP\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}2y+1=0\\x=\sqrt{2-x^2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-\frac{1}{2}\end{matrix}\right.\)

Bình luận (0)
Nguyễn Việt Lâm
3 tháng 6 2019 lúc 18:17

Bài 3:

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{\left(y+z\right)}=\frac{4}{x\left(y+z\right)}\ge\frac{4}{\frac{\left(x+y+z\right)^2}{4}}=\frac{16}{16}=1\)

Dấu "=" xảy ra khi và chỉ khi \(x=2y=2z=2\)

Bình luận (0)

Các câu hỏi tương tự
Diệp Vũ Ngọc
Xem chi tiết
Đinh Doãn Nam
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Đinh Doãn Nam
Xem chi tiết
Vũ Phương Linh
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
๖ۣۜTina Ss
Xem chi tiết
Wanna One
Xem chi tiết
Trần Thanh
Xem chi tiết