titanic
13 tháng 12 2016 lúc 12:03

A = 10ⁿ + 72n - 1 = 10ⁿ - 1 + 72n10ⁿ - 1 = 99...9 (có n-1 chữ số 9) = 9x(11..1) (có n chữ số 1)A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n => A : 9 = 11..1 + 8n = 11...1 -n + 9nthấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9=> A : 9 = 11..1 - n + 9n chia hết cho 9=> A chia hết cho 81

Bình luận (0)
Sư tử đáng yêu
28 tháng 12 2018 lúc 9:00

A = 10ⁿ + 72n - 1 = 10ⁿ - 1 + 72n

10ⁿ - 1 = 99...9 (có n-1 chữ số 9) = 9x(11..1) (có n chữ số 1)

A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n => A : 9 = 11..1 + 8n = 11...1 -n + 9n

thấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9

=> A : 9 = 11..1 - n + 9n chia hết cho 9

=> A chia hết cho 81

Bình luận (0)
tth_new
28 tháng 12 2018 lúc 9:47

Hoặc dùng phương pháp quy nạp dạng cơ bản (dùng được cho toán 6 nâng cao) 

Với \(n=0\Rightarrow\).... (bạn làm chỗ này tiếp nhé)

Với n = 1 \(\Rightarrow10^n+72n-1=10^1+72.1-1=81⋮81\)

\(\Rightarrow\)mệnh đề đúng với n = 1     (1)

Giả sử mệnh đề đúng với n = k tức là \(10^k+72k-1⋮81\) (giả thiết qui nạp)   (2)

Ta sẽ chứng minh nó cũng đúng với n = k + 1.Thật vậy:            

\(10^{k+1}+72\left(k+1\right)-1\)

\(=10\left(10^k+72k-1\right)-\left(648k-81\right)\)

Mà \(10^k+72k-1⋮81\) nên \(10\left(10^k+72k-1\right)⋮81\)   (*)

Mặt khác: \(648k⋮81;81⋮81\Rightarrow648k-81⋮81\) (**)

Từ (*) và (**) suy ra \(10\left(10^k+72k-1\right)-\left(648k-81\right)⋮81\) 

\(\Rightarrow\)mệnh đề đúng với n = k + 1 (3)

Từ (1) và (2) và (3) suy ra mệnh đề đúng với mọi \(n\inℕ\) (đpcm)

Bình luận (0)

Các câu hỏi tương tự

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN