Chương I - Căn bậc hai. Căn bậc ba

Nguyễn Thu Trà

Cho 3 số a, b, c khác O thoả mãn: abc=1 và \(\dfrac{a}{b^3}+\dfrac{b}{c^3}+\dfrac{c}{a^3}=\dfrac{b^3}{a}+\dfrac{c^3}{b}+\dfrac{a^3}{c}\). Chứng minh rằng: Trong 3 số a, b, c luôn tồn tại một số là lập phương của một trong hai số còn lại

Trần Trung Nguyên
30 tháng 12 2018 lúc 19:45

Đặt \(\dfrac{a^3}{c}=x;\dfrac{b^3}{a}=y;\dfrac{c^3}{b}=z\)

Suy ra \(\dfrac{a^3}{c}.\dfrac{b^3}{a}.\dfrac{c^3}{b}=xyz\Leftrightarrow xyz=\left(abc\right)^2=1\)

Vậy ta có \(\dfrac{c}{a^3}=\dfrac{1}{x};\dfrac{a}{b^3}=\dfrac{1}{y};\dfrac{b}{c^3}=\dfrac{1}{z}\)

Theo đề bài ta có \(x+y+z=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{xy+xz+yz}{xyz}=xy+xz+yz\)

Ta lại có \(\left(x-1\right)\left(y-1\right)\left(z-1\right)=xyz-xz-yz-xy+x+y+z-1=1-\left(xz+yz+xy\right)+x+y+z-1=-\left(x+y+z\right)+\left(x+y+z\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x-1=0\\y-1=0\\z-1=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\y=1\\z=1\end{matrix}\right.\)

_ x=1\(\Leftrightarrow\dfrac{a^3}{c}=1\Leftrightarrow a^3=c\left(1\right)\)

Tương tự:

y=1\(\Leftrightarrow\)\(b^3=a\)(2)

z=1\(\Leftrightarrow c^3=b\)(3)

Từ (1),(2),(3)

Vậy trong 3 số a,b,c luôn tồn tại một số là lập phương của một trong 2 số còn lại

Bình luận (0)

Các câu hỏi tương tự
Trần Huỳnh Cẩm Hân
Xem chi tiết
Nguyễn Hiếu Phụng
Xem chi tiết
Lê Huy Minh
Xem chi tiết
Trần Minh Tâm
Xem chi tiết
Hoàng Nam
Xem chi tiết
Thai Nguyen
Xem chi tiết
Đinh Thuận
Xem chi tiết
Nguyễn Trọng Cương
Xem chi tiết
Đinh Thuận
Xem chi tiết