Violympic toán 9

Lê Ánh Huyền

Cho x,y,z>0 và xyz=1. Tìm GTNN của Q = \(\dfrac{xy}{z^2\left(x+y\right)}+\dfrac{yz}{x^2\left(y+z\right)}+\dfrac{zx}{y^2\left(x+z\right)}\)

Nguyễn Xuân Tiến 24
3 tháng 11 2018 lúc 19:55

\(Q=\dfrac{xyz}{z^3\left(x+y\right)}+\dfrac{xyz}{x^3\left(y+z\right)}+\dfrac{xyz}{y^3\left(x+z\right)}\)

\(=\dfrac{1}{z^3\left(x+y\right)}+\dfrac{1}{y^3\left(x+z\right)}+\dfrac{1}{x^3\left(y+z\right)}\) (vì xyz = 1)

\(=\dfrac{\left(\dfrac{1}{z}\right)^2}{z\left(x+y\right)}+\dfrac{\left(\dfrac{1}{y}\right)^2}{y\left(x+z\right)}+\dfrac{\left(\dfrac{1}{x}\right)^2}{x\left(y+z\right)}\)

Áp dụng BĐT cauchy schwarz với x,y,z > 0 ta có:

\(Q\ge\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}{2\left(xy+yz+xz\right)}=\dfrac{\left(xy+yz+xz\right)^2}{2\left(xy+yz+xz\right)}=\dfrac{xy+yz+xz}{2}\)Mặt khác theo BĐT cauchy với x;y;z>0 thì

\(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}=3\)

Vậy MinQ = \(\dfrac{3}{2}\Leftrightarrow x=y=z=1\)

Bình luận (1)

Các câu hỏi tương tự
dia fic
Xem chi tiết
Nguyễn Khánh Huyền
Xem chi tiết
dia fic
Xem chi tiết
trần thị trâm anh
Xem chi tiết
Nguyễn Hải An
Xem chi tiết
Phạm Duy Phát
Xem chi tiết
Nguyễn Tấn Dũng
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
Nguyễn Võ Thảo VY
Xem chi tiết