HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho hai số dương thỏa mãn x+y=1
Tìm GTNN của Q= \(\dfrac{1}{x^2+xy+y^2}\) + \(\dfrac{4x^2y^2+1}{xy}\)
cho x,y thỏa mãn 1≤y≤2 và xy+2≥2y. tìm GTNN của \(M=\dfrac{x^2+4}{y^2+1}\)
cho x,y,z thỏa mãn xyz=1. tìm GTNN của \(T=\dfrac{xy}{z^2x+z^2y}+\dfrac{yz}{x^2y+x^2z}+\dfrac{zx}{y^2x+y^2z}\)
cho x,y,z dương thỏa mãn x+y+z=1. CMR: \(\dfrac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
cho x,y,z thỏa mãn \(x+y+z\le\dfrac{3}{2}\) . tìm GTNN của \(P=\dfrac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\dfrac{y\left(xz+1\right)^2}{y^2\left(xy+1\right)}+\dfrac{z\left(xy+1\right)^2}{x^2\left(yz+1\right)}\)