Chương I - Căn bậc hai. Căn bậc ba

NGUYỄN MINH HUY

cho 2 số a,b thỏa mãn a+b\(\ge\)0. Chứng minh rằng \(\left(a+b\right)\left(a^3+b^3\right)\left(a^5+b^5\right)\le4\left(a^9+b^9\right)\)

Akai Haruma
4 tháng 5 2020 lúc 18:47

Lời giải:
Đầu tiên ta sẽ chứng minh $(a^3+b^3)(a^5+b^5)\leq 2(a^8+b^8)(*)$

Thật vậy, $(*)\Leftrightarrow a^3b^5+a^5b^3\leq a^8+b^8$
$\Leftrightarrow a^5(a^3-b^3)-b^5(a^3-b^3)\geq 0$

$\Leftrightarrow (a^5-b^5)(a^3-b^3)\geq 0$

$\Leftrightarrow (a-b)^2(a^4+...+b^4)(a^2+ab+b^2)\geq 0$ (luôn đúng với mọi $a,b$

Do đó $(*)$ đúng

Nhân cả 2 vế của $(*)$ với $a+b\geq 0$ suy ra:

$(a+b)(a^3+b^3)(a^5+b^5)\leq 2(a+b)(a^8+b^8)$

Ta cần chứng minh $2(a+b)(a^8+b^8)\leq 4(a^9+b^9)$

$\Leftrightarrow (a+b)(a^8+b^8)\leq 2(a^9+b^9)$

$\Leftrightarrow a^9+b^9-a^8b-ab^8\geq 0$

$\Leftrightarrow a^8(a-b)-b^8(a-b)\geq 0$

$\Leftrightarrow (a^8-b^8)(a-b)\geq 0$

$\Leftrightarrow (a^4-b^4)(a^4+b^4)(a-b)\geq 0$

$\Leftrightarrow (a^4+b^4)(a-b)^2(a+b)(a^2+b^2)\geq 0$ (luôn đúng với mọi $a+b\geq 0$

Do đó ta có đpcm.

Dấu "=" xảy ra khi $a+b=0$ hoặc $a=b$

Bình luận (0)

Các câu hỏi tương tự
Đinh Thuận
Xem chi tiết
Quách Phú Đạt
Xem chi tiết
Ngoc An Pham
Xem chi tiết
Đạt Nguyễn
Xem chi tiết
noname
Xem chi tiết
Lâm Tinh Thần
Xem chi tiết
Nhàn Nguyễn
Xem chi tiết
Phạm Thị Thùy Dương
Xem chi tiết
Unruly Kid
Xem chi tiết