§1. Mệnh đề

Chau Thuy

xét tính đúng sai của mệnh đề sau và lập mệnh đề phủ định

\(\exists\)x\(\in\)R, x^4 = 3x^2 + 4x + 3 \(^{^{ }}\)

Doan Minh Cuong
18 tháng 9 2018 lúc 15:40

\(x^4=3x^2+4x+3\Leftrightarrow x^4-2x^2+1=x^2+4x+4\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(x+2\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=x+2\\x^2-1=-x-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-3=0\\x^2+x+1=0\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{1\pm\sqrt{13}}{2}\)

Vì vậy mệnh đề "\(\exists x\in\mathbb{R},x^4=3x^2+4x+3\)" là mệnh đề đúng.

Bình luận (1)
Mysterious Person
23 tháng 8 2018 lúc 12:15

+) ta có : \(x^4=3x^2+4x+3\Leftrightarrow x^4-3x^2-4x-3=0\)

\(\Leftrightarrow x^4-x^3-3x^2+x^3-x^2-3x+x^2-x-3=0\)

\(\Leftrightarrow x^2\left(x^2-x-3\right)+x\left(x^2-x-3\right)+\left(x^2-x-3\right)=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2-x-3\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{13}}{2}\\x=\dfrac{1+\sqrt{13}}{2}\end{matrix}\right.\)

\(\Rightarrow\exists x\in R,x^4=3x^2+4x+3\) \(\Rightarrow\) mệnh đề ở trên đúng

+) mệnh đề phủ định : \(\forall x\in R,x^4\ne3x^2+4x+3\)

Bình luận (0)

Các câu hỏi tương tự

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN