Chương I - Căn bậc hai. Căn bậc ba

Thai Nguyen

Chứng minh bất đẳng thức: \(\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+\dfrac{1}{c^3+a^3+1}\le1\) với mọi a,b,c là các số dương thỏa mãn abc =1

Nguyễn Xuân Tiến 24
10 tháng 8 2018 lúc 19:44

Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2-ab+b^2\ge ab\)

Nhân hai vế của phương trình với \(a+b>0\) ta có:

\(\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)Áp dụng kết quả trên ta có:

\(A=\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+\dfrac{1}{c^3+a^3+1}\le\)

\(\le\dfrac{1}{ab\left(a+b\right)+abc}+\dfrac{1}{bc\left(b+c\right)+abc}+\dfrac{1}{ca\left(c+a\right)+abc}=\)(vì abc=1)

\(=\dfrac{1}{ab\left(a+b+c\right)}+\dfrac{1}{bc\left(a+b+c\right)}+\dfrac{1}{ca\left(a+b+c\right)}=\dfrac{a+b+c}{abc\left(a+b+c\right)}=1\)

Bình luận (0)

Các câu hỏi tương tự
Thai Nguyen
Xem chi tiết
Hùng Mạnh
Xem chi tiết
Mạnh Phan
Xem chi tiết
Karry Angel
Xem chi tiết
Trần Minh Tâm
Xem chi tiết
phan thị minh anh
Xem chi tiết
Nguyễn Đức Thịnh
Xem chi tiết
Nguyễn Mai Anh
Xem chi tiết
Kresol♪
Xem chi tiết