Violympic toán 9

Tường Nguyễn Thế

Cho a, b, c là các số thực dương thoả mãn: ab+bc+ca=abc. Tìm giá trị lớn nhất của biểu thức: \(P=\dfrac{a}{bc\left(a+1\right)}+\dfrac{b}{ca\left(b+1\right)}+\dfrac{c}{ab\left(c+1\right)}\)

Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 10 tháng 7 2020 lúc 17:22

\(ab+bc+ca=abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)

\(P=\sum\frac{yz}{x+1}=\sum\frac{yz}{x+x+y+z}=\sum\frac{yz}{x+y+x+z}\le\frac{1}{4}\sum\left(\frac{yz}{x+y}+\frac{yz}{x+z}\right)\)

\(P\le\frac{1}{4}\left(x+y+z\right)=\frac{1}{4}\)

\(P_{max}=\frac{1}{4}\) khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=3\)

Bình luận (0)

Các câu hỏi tương tự
Loading...

Khoá học trên OLM của Đại học Sư phạm HN