Ôn tập phép nhân và phép chia đa thức

Đinh Thị Ngọc Anh

Cho các số nguyên dương \(a_1,a_2,a_3,...a_n\) thỏa mãn \(\left(a_1+a_2+a_3+...+a_n\right)⋮30\)

CMR: \(a_1^5+a_2^5+a_3^5+...+a_n^5⋮30\)

Nguyễn Anh Kim Hân
Nguyễn Anh Kim Hân 30 tháng 12 2017 lúc 10:20

Đặt A = a1+a2+a3+...+an

B = a15 + a25 + a35+ ... + an5

Xét X = B - A = (a15 - a1) + (a25 - a2) + ... + (an5 - an)

ai5 - ai = ai(ai4 - 1) = ai (ai-1)(ai+1)(ai2+1) (i = 1;2;3;...;n)

ai (ai-1)(ai+1) chia hết cho 2;3 mà (2;3)=1 nên ai (ai-1)(ai+1) chia hết cho 6. Vậy X chia hết cho 6.

Nếu ai=5k => X chia hết 5.

Nếu ai = 5k\(\pm\)1 => (ai-1)(ai+1) chia hết 5 => X chia hết 5.

Nếu ai = 5k\(\pm\)2 => ai2 + 1 = (5k\(\pm\)2)2 + 1 = 25k2 \(\pm\) 20k + 5 => X chia hết 5.

Mà (6;5) =1 => X = B - A chia hết 30 mà A chia hết 30 => B chia hết 30 hay a15 + a25 + a35+ ... + an5 chia hết 30.

Bình luận (0)

Các câu hỏi tương tự

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN