Diện tích tam giác

Lệnh Hồ Xung

Cho tam giác ABC, trung tuyến AM. Gọi I là trung điểm AM. Tia CI cắt AB ở E. Gọi F là trung điểm của EB. Biết SABC= 36 m^2. Tính SBFC

Akai Haruma
26 tháng 12 2017 lúc 13:39

Lời giải:

Từ $M$ kẻ \(MG\parallel AB(G\in EC)\)

Áp dụng định lý Thales:

\(\frac{BC}{MC}=\frac{EB}{GM}\) và \(\frac{MI}{AI}=\frac{GM}{AE}\)

Nhân hai biểu thức với nhau:

\(\frac{BC}{MC}.\frac{MI}{AI}=\frac{EB}{AE}\)

\(\Leftrightarrow \frac{EB}{AE}=2.1=2\)

\(\Leftrightarrow \frac{BE}{AB}=\frac{2}{3}\)

Do đó:\(\frac{S_{CEB}}{S_{ABC}}=\frac{EB}{AB}=\frac{2}{3}\Rightarrow S_{CEB}=\frac{2}{3}.36=24\)

\(\frac{S_{BFC}}{S_{BEC}}=\frac{BF}{BE}=\frac{1}{2}\Rightarrow S_{BFC}=\frac{1}{2}S_{BEC}=12\) (mét vuông)

Bình luận (0)

Các câu hỏi tương tự

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN