Ôn tập hệ hai phương trình bậc nhất hai ẩn

Anh Khương Vũ Phương

Giải hệ PT: \(\left\{{}\begin{matrix}x+y+x^2+y^2=8\\xy\left(x+1\right)\left(y+1\right)=12\end{matrix}\right.\)

Hung nguyen
24 tháng 11 2017 lúc 10:07

Đặt \(\left\{{}\begin{matrix}x\left(x+1\right)=a\\y\left(y+1\right)=b\end{matrix}\right.\) thì ta có:

\(\left\{{}\begin{matrix}a+b=8\\ab=12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=6\end{matrix}\right.or\left\{{}\begin{matrix}a=6\\b=2\end{matrix}\right.\)

Tới đây thì đơn giải rồi nhé

Bình luận (0)

Các câu hỏi tương tự

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN