§1. Đại cương về phương trình

Nguyễn Huỳnh Đông Anh

Giải phương trình :

       \(\left(5x+1\right)\sqrt{2x+1}-\left(7x+3\right)\sqrt{x}=1\)

Nguyễn Minh Hằng
Nguyễn Minh Hằng 18 tháng 5 2016 lúc 21:31

Điều kiện \(x\ge0\) khi đó phương trình đã cho :

       \(\Leftrightarrow\left[\left(2x+1\right)+3x\right]\sqrt{2x+1}-\left[3\left(2x+1\right)+x\right]\sqrt{x}=1\) (a)

Đặt \(u=\sqrt{2x+1};v=\sqrt{x}\) thay vào (2) ta được :

\(\left(u^2+3v^2\right)u-\left(3u^2+v^2\right)v=1\)

\(\Leftrightarrow u^3-3u^2v+3uv^2-v^3=1\)

\(\Leftrightarrow\left(u-v\right)^3=1\)

\(\Leftrightarrow u-v=1\)

\(\Leftrightarrow u=v+1\)

Vậy :

\(\sqrt{2x+1}=\sqrt{x}+1\)

\(\Leftrightarrow2x+1=x+2\sqrt{x}+1\)

\(\Leftrightarrow2\sqrt{x}=x\)

\(\Leftrightarrow4x=x^2\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=4\end{array}\right.\) (Thỏa mãn điều kiện)

Đáp số : \(x=0;x=4\)

Bình luận (0)

Các câu hỏi tương tự

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN