Bài 2.1: Khoảng cách từ điểm đến mặt phẳng

Phạm Đức Trọng

Cho mặt phẳng \(\left(P\right):x+z-5=0\) và 2 điểm \(A\left(1;2;1\right);B\left(3;-2;3\right)\)

Tìm điểm M trên mặt phẳng (P) sao cho :\(MA^2+MB^2\) nhỏ nhất.

Nguyễn Minh Hằng
Nguyễn Minh Hằng 17 tháng 5 2016 lúc 21:52

Gọi I là trung điểm của đoạn thẳng AB. Khi đó \(I\left(2;0;2\right)\) với mọi điểm M đều có :

\(MA^2+MB^2=\overrightarrow{MA^2}+\overrightarrow{MB^2}\)

                       \(=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IB}\right)^2\)

                       \(=2MI^2+\left(IA^2+IB^2\right)=2MI^2+\frac{AB^2}{2}\)

Do đó \(M\in\left(P\right)\) sao cho \(MA^2+MB^2\) bé nhất khi và chỉ khi M là hình chiếu của I trên mặt phẳng (P)

Gọi \(\left(x;y;z\right)\) là tọa độ hình chiếu vuông góc của điểm I trên mặt phẳng (P). Khi đó ta có hệ phương trình :

\(\begin{cases}x+y+z-6=0\\\frac{x-2}{1}=\frac{y-0}{1}=\frac{z-2}{1}\end{cases}\)

Giải hệ thu được :

\(x=\frac{8}{3};y=\frac{2}{3};z=\frac{8}{3}\)

Vậy điểm M cần tìm là \(M\left(\frac{8}{3};\frac{2}{3};\frac{8}{3}\right)\)

Bình luận (0)

Các câu hỏi tương tự

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN