Ôn tập cuối năm phần số học

Nấm Chanel

Cho a,b,c là độ dài 3 cạnh của 1 tam giác

Chứng minh: \(A=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)

Lightning Farron
Lightning Farron 8 tháng 5 2017 lúc 19:55

Theo BĐT Schur thì ta có:

\((a+b-c)(b+c-a)(c+a-b)\leq abc\)

Vậy thì giờ chỉ theo AM-GM là xong

\(A=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)

\(\ge3\sqrt[3]{\dfrac{abc}{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}=3\)

Bình luận (0)

Các câu hỏi tương tự
Loading...

Khoá học trên OLM của Đại học Sư phạm HN