Violympic toán 7

cao minh thành

Cho S = \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+.......+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)và P = \(\dfrac{1}{1007}+\dfrac{1}{1008}+....+\dfrac{1}{2012}+\dfrac{1}{2013}\). Tính\(\left(P-S\right)^{2013}\)

Nguyễn Huy Tú
25 tháng 3 2017 lúc 21:15

Ta có: \(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1006}\right)\)

\(=\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)

\(\Rightarrow P-S=\left(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-\left(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2013}\right)=0\)

\(\Rightarrow\left(P-S\right)^{2013}=0^{2013}=0\)

Vậy \(\left(P-S\right)^{2013}=0\)

Bình luận (1)

Các câu hỏi tương tự

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN