Violympic toán 9

Louis Thương Thanh

Ai giúp mk vs ạ. Hứa sẽ tick

Louis Thương Thanh
Louis Thương Thanh 28 tháng 10 2020 lúc 16:13
https://i.imgur.com/J9e0f1y.jpg
Bình luận (0)
Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 28 tháng 10 2020 lúc 18:35

Bài 1 chắc ai cũng biết

Bài 2 bạn tham khảo trang 40 trong tài liệu này:

Câu hỏi của Nguyễn Việt Lâm - Toán lớp 6 | Học trực tuyến

Ví dụ câu b:

\(\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)

\(=\sqrt[3]{27+3.9.\sqrt{2}+3.2.9+2\sqrt{2}}+\sqrt[3]{27-3.9.\sqrt{2}+3.2.9-2\sqrt{2}}\)

\(=\sqrt[3]{\left(3+\sqrt{2}\right)^3}+\sqrt[3]{\left(3-\sqrt{2}\right)^3}\)

\(=6\)

Các câu khác tách tương tự

Bài 3 để ý 2 mẫu số đều có dạng:

\(a^2\pm ab+b^2\)

Do đó nhân cả tử và mẫu với \(a\mp b\) để đưa về hằng đẳng thức

\(\frac{1}{\sqrt[3]{4^2}+\sqrt[3]{4.3}+\sqrt[3]{3^2}}=\frac{\sqrt[3]{4}-\sqrt[3]{3}}{\left(\sqrt[3]{4}-\sqrt[3]{3}\right)\left(\sqrt[3]{4^2}+\sqrt[3]{4.3}+\sqrt[3]{3^2}\right)}\)

\(=\frac{\sqrt[3]{4}-\sqrt[3]{3}}{\left(\sqrt[3]{4}\right)^3-\left(\sqrt[3]{3}\right)^3}=\sqrt[3]{4}-\sqrt[3]{3}\)

\(\frac{1}{\sqrt[3]{3^2}-\sqrt[3]{3.2}+\sqrt[3]{2^2}}=\frac{\sqrt[3]{3}+\sqrt[3]{2}}{\left(\sqrt[3]{3}+\sqrt[3]{2}\right)\left(\sqrt[3]{3^2}-\sqrt[3]{3.2}+\sqrt[3]{2^2}\right)}\)

\(=\frac{\sqrt[3]{3}+\sqrt[3]{2}}{\left(\sqrt[3]{3}\right)^3+\left(\sqrt[3]{2}\right)^3}=\frac{\sqrt[3]{3}+\sqrt[3]{2}}{5}\)

Bình luận (0)

Các câu hỏi tương tự

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN