Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Easylove

giải phương trình \(x+\frac{x}{\sqrt{x^2-1}}=\frac{35}{12}\)

Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 27 tháng 10 2020 lúc 21:14

ĐKXĐ: ...

- Với \(x\le-1\Rightarrow VT< 0< \frac{35}{12}\) pt vô nghiệm

- Với \(x>1\) hai vế ko âm, bình phương:

\(\Leftrightarrow x^2+\frac{x^2}{x^2-1}+\frac{2x^2}{\sqrt{x^2-1}}=\frac{1225}{144}\)

\(\Leftrightarrow\frac{x^4}{x^2-1}+\frac{2x^2}{\sqrt{x^2-1}}-\frac{1225}{144}=0\)

Đặt \(\frac{x^2}{\sqrt{x^2-1}}=t>0\)

\(\Rightarrow t^2+2t-\frac{1225}{144}=0\Rightarrow\left[{}\begin{matrix}t=\frac{25}{12}\\t=-\frac{49}{12}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\frac{x^2}{\sqrt{x^2-1}}=\frac{25}{12}\Leftrightarrow...\)

Bình luận (0)

Các câu hỏi tương tự

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN