Bài 6: Ôn tập chương Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

Tường Nguyễn Thế

Có bao nhiêu giá trị nguyên của tham số m để phương trình \(4x\left(\sqrt{4x-m}-2\right)=x^3+\left(m-8\right)\sqrt{4x-m}\) có hai nghiệm thực phân biệt

Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 15 tháng 10 2020 lúc 20:08

Đặt \(\sqrt{4x-m}=t\ge0\Rightarrow m=4x-t^2\)

Pt trở thành:

\(4x\left(t-2\right)=x^3+\left(4x-t^2-8\right)t\)

\(\Leftrightarrow4tx-8x=x^3+4tx-t^3-8t\)

\(\Leftrightarrow x^3-t^3+8x-8t=0\)

\(\Leftrightarrow\left(x-t\right)\left(x^2+xt+t^2+8\right)=0\)

\(\Leftrightarrow x=t\)

\(\Leftrightarrow\sqrt{4x-m}=x\) (\(x\ge0\))

\(\Leftrightarrow m=-x^2+4x\)

Xét hàm \(f\left(x\right)=-x^2+4x\) với \(x\ge0\)

Từ BBT ta thấy để \(y=m\) cắt \(y=f\left(x\right)\) tại 2 điểm pb

\(\Leftrightarrow0\le m< 4\)

Bình luận (0)

Các câu hỏi tương tự

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN