HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
cho x , y là 2 số nguyên không chia hết cho 3 . cmr; x6-y6 chia hết cho 9.
Ta có: \(x^3;y^3\equiv1;-1\left(mod9\right)\Rightarrow x^6\equiv y^6\equiv1\left(mod9\right)\Rightarrow x^6-y^6⋮9\)
cho a,b là các số nguyên dương thỏa mãn \(p=a^2+b^2\) là số nguyên tố và p - 5 chia hết cho 8. giả sử các số nguyên x, y thỏa mãn \(ax^2-by^2\) chia hết cho p. Cmr: x,y cùng chia hết cho p
Cho P = ab(a+b) + 2, với a,b nguyên. Cmr : nếu giá trị của P chia hết cho 3 thì P chia hết cho 9
Cho p là số nguyên tố lẻ và a,b,c,d là các số nguyên dương nhỏ hơn p đồng thời a2+b2 chia hết cho p và c2+d2 chia hết cho p.C/m: Trong 2 số ac+bd và ad+bc có một và chỉ một số chia hết cho p
Cho p là số nguyên tố lớn hơn 3. CMR
a) (p-1)(p+1) chia hết cho 24
b) p4 - 1 chia hết cho 48