Violympic toán 8

Đặng Khánh Duy

Chứng minh: \(a^3+b^3+c^3=3abc\) thì a+b+c=0 hoặc a=b=c. Áp dụng cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). Tính giá trị của biểu thức: \(A=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)

Nguyễn Việt Lâm
27 tháng 9 2020 lúc 15:07

\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

Áp dụng: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

\(A=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc.\frac{3}{abc}=3\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
Đặng Khánh Duy
Xem chi tiết
tran thi mai anh
Xem chi tiết
Minh
Xem chi tiết
Tranh Diệp Phi
Xem chi tiết
Trần Anh Thơ
Xem chi tiết
Nhóc Bin
Xem chi tiết
Roxie2k7
Xem chi tiết
Lê Phan Lê Na
Xem chi tiết
Y
Xem chi tiết