Violympic toán 9

Cát Cát Trần

dạ mọi người giúp em bài Toán 8 này với ạ! Dạ em cảm ơn ạ

Cho a,b,c > 0 thỏa mãn abc = 1. Chứng minh

a) \(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{a^2+c^2}{a+c}\ge\:3\)

b) \(\frac{1}{a+b^4+c^4}+\frac{1}{b+a^4+c^4}+\frac{1}{c+b^4+a^4}\le\:1\)

Nguyễn Việt Lâm
14 tháng 9 2020 lúc 7:28

a/

\(VT\ge\frac{\frac{1}{2}\left(a+b\right)^2}{a+b}+\frac{\frac{1}{2}\left(b+c\right)^2}{b+c}+\frac{\frac{1}{2}\left(c+a\right)^2}{c+a}=a+b+c\ge3\sqrt[3]{abc}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

b/ Ta có: \(x^4+y^4\ge\frac{1}{2}\left(x^2+y^2\right)\left(y^2+y^2\right)\ge xy\left(x^2+y^2\right)\)

\(\Rightarrow VT\le\frac{1}{a+bc\left(b^2+c^2\right)}+\frac{1}{b+ca\left(a^2+c^2\right)}+\frac{1}{c+ab\left(a^2+b^2\right)}\)

\(VT\le\frac{1}{a+\frac{1}{a}\left(b^2+c^2\right)}+\frac{1}{b+\frac{1}{b}\left(a^2+c^2\right)}+\frac{1}{c+\frac{1}{c}\left(a^2+b^2\right)}\)

\(VT\le\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}=\frac{a+b+c}{a^2+b^2+c^2}\)

\(VT\le\frac{a+b+c}{\frac{1}{3}\left(a+b+c\right)^2}=\frac{3}{a+b+c}\le\frac{3}{3\sqrt[3]{abc}}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)

Các câu hỏi tương tự
Cát Cát Trần
Xem chi tiết
Cát Cát Trần
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Phạm Minh anh
Xem chi tiết
Lê Đình Quân
Xem chi tiết
fghj
Xem chi tiết
Nguyễn Mai Phương
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
vũ manh dũng
Xem chi tiết