Violympic toán 9

Cát Cát Trần

Dạ mọi người giúp em bài Toán này với ạ! Dạ em cảm ơn ạ

Cho ba số a,b,c dương thỏa mãn abc = 1. Chứng minh rằng

\(\frac{a}{b}+\frac{b}{c}+\frac{a}{c}+\frac{3}{a+b+c}\ge\:4\)

Nguyễn Việt Lâm
31 tháng 8 2020 lúc 23:18

Sửa đề: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{3}{a+b+c}\ge4\)

\(\Leftrightarrow\frac{a^2c+b^2a+c^2b}{abc}+\frac{3}{a+b+c}\ge4\)

\(\Leftrightarrow P=a^2c+b^2a+c^2b+\frac{3}{a+b+c}\ge4\)

Ta có:

\(a^2c+a^2c+b^2a\ge3\sqrt[3]{a^3.\left(abc\right)^2}=3a\)

\(b^2a+b^2a+c^2b\ge3\sqrt[3]{b^3\left(abc\right)^2}=3b\)

\(c^2b+c^2b+a^2c\ge3\sqrt[3]{c^3\left(abc\right)^2}=3c\)

Cộng vế với vế: \(a^2c+b^2a+c^2b\ge a+b+c\)

\(\Rightarrow P\ge a+b+c+\frac{3}{a+b+c}=\frac{a+b+c}{3}+\frac{3}{a+b+c}+\frac{2}{3}\left(a+b+c\right)\)

\(\Rightarrow P\ge2\sqrt{\frac{3\left(a+b+c\right)}{3\left(a+b+c\right)}}+\frac{2}{3}.3\sqrt[3]{abc}=4\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)

Các câu hỏi tương tự
Cát Cát Trần
Xem chi tiết
Cát Cát Trần
Xem chi tiết
Phạm Minh anh
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
Nguyễn Thành Nam
Xem chi tiết
Đại Ngọc
Xem chi tiết
Nguyễn Thanh Hiền
Xem chi tiết
Nguyễn Thanh Hiền
Xem chi tiết