Violympic toán 7

Dương Minh Anh

Cho \(a,b\) thuộc \(Z\).CMR:\(a^{2}-17ab+b^{2}\vdots25<=>a\vdots5,b\vdots5.\)

Giúp mk nha, mk cảm ơn các bạn nhiều!!!!!!

Akai Haruma
12 tháng 8 2020 lúc 9:04

Lời giải:

Chiều thuận: $a^2-17ab+b^2\vdots 25\Rightarrow a\vdots 5, b\vdots 5$

Ta có:

$a^2-17ab+b^2\vdots 25\vdots 5$

$\Leftrightarrow a^2-17ab+15ab+b^2\vdots 5$

$\Leftrightarrow a^2-2ab+b^2\vdots 5\Leftrightarrow (a-b)^2\vdots 5$

$\Rightarrow a-b\vdots 5\Rightarrow (a-b)^2\vdots 25$

$\Leftrightarrow a^2-2ab+b^2\vdots 25$

Mà $a^2-17ab+b^2\vdots 25$

$\Rightarrow 15ab\vdots 25\Rightarrow ab\vdots 5\Rightarrow a\vdots 5$ hoặc $b\vdots 5$

Nếu $a\vdots 5$ thì $b^2\vdots 25\Rightarrow b\vdots 5$

Nếu $b\vdots 5$ thì $a^2\vdots 25\Rightarrow a\vdots 5$

Ta có đpcm

Chiều đảo: $a\vdots 5, b\vdots 5\Rightarrow a^2\vdots 25, 17ab\vdots 25, b^2\vdots 25$

$\Rightarrow a^2-17ab+b^2\vdots 25$ (đpcm)

Từ 2 chiều trên ta có:

$a^2-17ab+b^2\vdots 25\Leftrightarrow a,b\vdots 5$

Bình luận (0)

Các câu hỏi tương tự

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN