Violympic toán 9

Trí Phạm

Cho ΔABC có 3 góc nhọn. Từ một điểm I thuộc miền trong tam giác kẻ IH, IK, IL lần lượt vuông góc với BC, CA, AB. Tìm vị trí điểm I sao cho \(AL^2+BH^2+CK^2\) nhỏ nhất.

Nguyễn Lê Diễm My
Nguyễn Lê Diễm My 8 tháng 8 2020 lúc 14:20

* Tự vẽ hình nha:

Xét các tam giác vuông ALI và AKI ta có:

AL2 + LI2 = AI2 = AK2 + KI2

BH2 + IH2 = BI2 = BL2 + LI2

CK2 + KI2 = CI2 = CH2 + IH2

=> AL2 + BH2 + CK2 = AK2 + CH2 + BL2

=> 2(AL2 + BH2 +CK2) = (AL2 + LB2) + (BH2 + HC2) + (CK2 + KA2)

\(\frac{\left(AL+LB\right)^2}{2}+\frac{\left(BH+HC\right)^2}{2}+\frac{\left(CK+KA\right)^2}{2}=\frac{1}{2}\left(AB^2+BC^2+CA^2\right)\)

=> ( AL2 + BH2 + CK2) ≥ \(\frac{1}{4}\)(AB2 + BC2 + CA2)

Vậy minAL2 + BH2 + CK2 \(\frac{1}{4}\)(AB2 + BC2 + CA2)

Dấu " = " xảy ra ⇔ I là tâm đường tròn ngoại tiếp ΔABC

Bình luận (0)

Các câu hỏi tương tự
Loading...