Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

Linh Bùi

P=\(\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x+1}}{\sqrt{x}-1}\right).\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\) Rút gọn BT

Nguyễn Ngọc Lộc
5 tháng 8 2020 lúc 18:11

ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne0\\\sqrt{x}-1\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ge0\\x\ne0\\x\ne1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

Ta có : \(P=\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\)

=> \(P=\left(\frac{\left(\sqrt{x}-1\right)^2}{x-1}-\frac{\left(\sqrt{x}+1\right)^2}{x-1}\right)\left(\frac{1}{2\sqrt{x}}-\frac{x}{2\sqrt{x}}\right)^2\)

=> \(P=\left(\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{x-1}\right)\left(\frac{1-x}{2\sqrt{x}}\right)^2\)

=> \(P=\left(\frac{\left(\sqrt{x}-1+\sqrt{x}+1\right)\left(\sqrt{x}-1-\sqrt{x}-1\right)}{x-1}\right)\left(\frac{1-x}{2\sqrt{x}}\right)^2\)

=> \(P=\left(\frac{-4\sqrt{x}}{x-1}\right)\left(\frac{1-x}{2\sqrt{x}}\right)^2\)

=> \(P=\frac{-4\sqrt{x}\left(x-1\right)^2}{\left(2\sqrt{x}\right)^2\left(x-1\right)}\)

=> \(P=-\frac{x-1}{\sqrt{x}}\)

Vậy ...

Bình luận (0)

Các câu hỏi tương tự

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN