Bài 4: Ôn tập chương nguyên hàm, tích phân và ứng dụng

Nhuan

Cho ​​\(4xf\left(x\right)+3f\left(1-x\right)=\sqrt{1-x}\)

Tính

I = \(\int_0^1f\left(x\right)dx\)

Akai Haruma
Akai Haruma Giáo viên 27 tháng 7 2020 lúc 13:00

Lời giải:

Bổ sung điều kiện $f(x)$ liên tục trên đoạn $[0;1]$

Ta có:

ĐKĐB $\Rightarrow \int ^1_04f(x)dx+\int ^1_03f(1-x)dx=\int ^1_0\sqrt{1-x}dx$

$\Leftrightarrow 4\int ^1_0f(x)dx+3\int ^1_0f(1-x)dx=\frac{2}{3}$

Mà:

$\int ^1_0f(1-x)dx=-\int ^1_0f(1-x)d(1-x)=-\int ^0_1f(x)dx=\int ^1_0f(x)dx$

Do đó:

$7\int ^1_0f(x)dx=\frac{2}{3}$

$\Rightarrow \int ^1_0f(x)dx=\frac{2}{21}$

Bình luận (0)

Các câu hỏi tương tự

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN