Violympic toán 8

Trần Bảo Hân

a) CMR: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right).\left(x+y+z\right)>=9\) với mọi x, y, z >0

b) Cho các số dương x, y, z thỏa mãn x + y + z <= 3

Chứng minh rằng: \(\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}>=670\)

Oz Vessalius
16 tháng 6 2020 lúc 10:48

Áp dụng BĐT Côsi dưới dạng engel, ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(x+y+z\right).\frac{9}{x+y+z}\) = 9

Dấu "=" xảy ra ⇔ x = y = z

Bình luận (0)
Nguyễn Việt Lâm
17 tháng 6 2020 lúc 23:57

\(P=\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}+\frac{2007}{xy+yz+zx}\)

\(P\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{2007}{\frac{1}{3}\left(x+y+z\right)^2}\)

\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{6021}{\left(x+y+z\right)^2}=\frac{6030}{\left(x+y+z\right)^2}\ge\frac{6030}{3^2}=670\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)

Các câu hỏi tương tự
Matsumi
Xem chi tiết
mr. killer
Xem chi tiết
mr. killer
Xem chi tiết
MInemy Nguyễn
Xem chi tiết
MInemy Nguyễn
Xem chi tiết
MInemy Nguyễn
Xem chi tiết
MInemy Nguyễn
Xem chi tiết
Nguyễn Thị Thanh Trang
Xem chi tiết
♡ ♡ ♡ ♡ ♡
Xem chi tiết