Phương trình bậc nhất hai ẩn

Akai Haruma
Akai Haruma Giáo viên Hôm qua lúc 1:34

Lời giải:PT $\Leftrightarrow x^2+x(y-2014)-(2015y+2016)=0$

Coi đây là PT bậc 2 ẩn $x$. Để pt có nghiệm nguyên thì:

$\Delta=(y-2014)^2+4(2015y+2016)=t^2$ với $t\in\mathbb{N}$

$\Leftrightarrow y^2+4032y+4064260=t^2$

$\Leftrightarrow (y+2016)^2+4=t^2$$\Leftrightarrow 4=(t-y-2016)(t+y+2016)$

Đến đây thì đơn giản rồi thì đây là dạng phương trình tích.

 

Bình luận (0)
Akai Haruma
Akai Haruma Giáo viên Hôm qua lúc 1:45

Lời giải:

ĐỔi 1h24' thành 1,4h

Gọi vận tốc dự định là $a$ (km/h). ĐK: $a>5$

Thời gian dự định là: $\frac{AB}{a}$ (h)

Theo bài ra ta có:

$\frac{AB}{a+10}=\frac{AB}{a}-1,4$

$\frac{AB}{a-5}=\frac{AB}{a}+1$

\(\Leftrightarrow \left\{\begin{matrix} \frac{10AB}{a(a+10)}=1,4\\ \frac{5AB}{a(a-5)}=1\end{matrix}\right.\Rightarrow \frac{2(a-5)}{a+10}=1,4\Rightarrow a=40\) (km/h)

Độ dài quãng đường $AB$ là: \(AB=\frac{1,4a(a+10)}{10}=\frac{1,4.40.50}{10}=280\) (km)

 

 

Bình luận (0)

a) Thay a=-1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+y=2\\-x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y=1\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x-1=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

Vậy: Khi a=-1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(3;-1)

b) Ta có: \(\left\{{}\begin{matrix}x+y=2\\ax-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y=2\\ax-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+ax=3\\x+y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(a+2\right)=3\\x+y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{a+2}\\y=2-\dfrac{3}{a+2}=\dfrac{2a+4-3}{a+2}=\dfrac{2a+1}{a+2}\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{3}{a+2};\dfrac{2a+1}{a+2}\right)\)

Để x>0 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{3}{a+2}>0\\\dfrac{2a+1}{a+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+2>0\\2a+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>-2\\2a>-1\end{matrix}\right.\Leftrightarrow a>-\dfrac{1}{2}\)

Vậy: Để hệ phương trình có nghiệm duy nhất thỏa mãn x>0 và y>0 thì \(a>-\dfrac{1}{2}\)

 

Bình luận (0)
tthnew
tthnew 13 tháng 1 lúc 17:52

Lấy phương trình trên trừ phương trình dưới thu được:

\(2\left(y-x\right)=-2\Rightarrow y=x-1\)

Thay vào phương trình dưới suy ra:

\(2\sqrt{2}x=4\sqrt{2}0\Rightarrow x=2\Rightarrow y=1\)

Bình luận (1)
Nguyễn Lê Phước Thịnh
Nguyễn Lê Phước Thịnh CTV 10 tháng 1 lúc 21:25

1) Ta có: \(\left\{{}\begin{matrix}3\sqrt{x}-\sqrt{y}=5\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9\sqrt{x}-3\sqrt{y}=15\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}11\sqrt{x}=33\\3\sqrt{x}-\sqrt{y}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=3\\\sqrt{y}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)

2) Ta có: \(\left\{{}\begin{matrix}\sqrt{x+3}-2\sqrt{y+1}=2\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{x+3}+4\sqrt{y+1}=-4\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{y+1}=0\\\sqrt{x+3}-2\sqrt{y+1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y+1}=0\\\sqrt{x+3}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+1=0\\x+3=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Bình luận (0)
Nguyễn Lê Phước Thịnh
Nguyễn Lê Phước Thịnh CTV 10 tháng 1 lúc 21:12

2) Ta có: \(\left\{{}\begin{matrix}\sqrt{3x-1}-\sqrt{2y+1}=1\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{3x-1}-2\sqrt{2y+1}=2\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-5\sqrt{2y+1}=-10\\\sqrt{3x-1}-\sqrt{2y+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2y+1}=2\\\sqrt{3x-1}-2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y+1=4\\3x-1=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=3\\3x=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{2}\\x=\dfrac{10}{3}\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{10}{3}\\y=\dfrac{3}{2}\end{matrix}\right.\)

3) Ta có: \(\left\{{}\begin{matrix}\sqrt{x-2}+\sqrt{y-3}=3\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-2}+2\sqrt{y-3}=6\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{y-3}=10\\\sqrt{x-2}+\sqrt{y-3}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y-3}=2\\\sqrt{x-2}+2=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y-3=4\\x-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=7\\x=3\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)

Bình luận (0)
Nguyễn Duy Khang
Nguyễn Duy Khang CTV 4 tháng 1 lúc 11:22

Bạn tham khảoundefined

 

Bình luận (0)
Nguyễn Văn Đạt
Nguyễn Văn Đạt 4 tháng 1 lúc 12:41

\(ĐKXĐ:x\ge2\)

Phương trình đã cho \(\Leftrightarrow x^2-5x-2\sqrt{x-2}+8=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)+\left(x-2-2\sqrt{x-2}+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x-2}-1\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(\sqrt{x-2}-1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow x=3\) ( Thỏa mãn )

Vậy pt đã cho có nghiệm duy nhất \(x=3\)

Bình luận (0)
Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 15 tháng 12 2020 lúc 0:36

ĐKXĐ: \(x\ge15\)

Đặt \(\sqrt{x-15}=t\ge0\Rightarrow x=t^2+15\)

Pt trở thành:

\(t^2+15-t=17\Leftrightarrow t^2-t-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1< 0\left(loại\right)\\t=2\end{matrix}\right.\)

\(\Rightarrow\sqrt{x-15}=2\Rightarrow x=19\)

Bình luận (0)
Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 6 tháng 12 2020 lúc 0:12

- Nếu x; y đều nguyên âm \(\Rightarrow\left\{{}\begin{matrix}4^x< 1\\3^y+1>1\end{matrix}\right.\) pt vô nghiệm

- Nếu x; y là 2 số trái dấu \(\Rightarrow4^x\)\(3^y\) luôn có 1 số hữu tỉ, 1 số nguyên (vô nghiệm)

\(\Rightarrow x;y\) đều nguyên dương

Pt\(\Leftrightarrow2^{2x}-1=3^y\)

\(\Leftrightarrow\left(2^x-1\right)\left(2^x+1\right)=3^y\)

\(\Rightarrow\left\{{}\begin{matrix}2^x-1=3^a\\2^x+1=3^b\end{matrix}\right.\)

\(\Rightarrow3^b-3^a=2\)

\(\Leftrightarrow3^a\left(3^{b-a}-1\right)=2\)

\(\Rightarrow\left\{{}\begin{matrix}3^a=1\\3^{b-1}-1=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=0\\b=1\end{matrix}\right.\)

\(\Rightarrow x=1\Rightarrow y=1\)

Bình luận (0)
Quân Võ
Quân Võ 25 tháng 10 2020 lúc 21:54

\(\rightarrow2^x\left(2^x-1\right)=56\)

\(2^x\left(2^x-1\right)\) là tích 2 số tự nhiên liên tiếp

\(\rightarrow\) \(2^x\) =8 , \(\left(2^x-1\right)\) =7

\(\rightarrow\) x=3

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN