Người hay giúp bạn khác trả lời bài tập sẽ trở thành học sinh giỏi. Người hay hỏi bài thì không. Còn bạn thì sao?
Cho a,b,c là 3 cạnh tam giác. Chứng minh \(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)
Được cập nhật Hôm kia lúc 11:28 3 câu trả lời


C1 : Áp dụng bất đẳng thức AM - GM ta có :
\(\sum\dfrac{a}{b+c-a}\ge3\sqrt[3]{\dfrac{abc}{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}\ge3\)
Dấu = xảy ra khi và chỉ khi a = b = c.
C2 : Theo Cauchy Schwarz :
\(\sum \frac{a}{b+c-a}\geq \sum \frac{a^2}{ab+ac-a^2}\geq \frac{(a+b+c)^2}{2(ab+ca+bc)-a^2-b^2-c^2}\geq \frac{(a+b+c)^2}{\frac{2}{3}(a+b+c)^2-\frac{1}{3}(a+b+c)^2}=3\)
(đpcm).
Cho \(M=\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{a^2+c^2-b^2}{2ac}\)
Chứng minh rằng:
a. Nếu a, b, c là cạnh của tam giác thì M>1
b. Nếu M = 1 thì 2 trong 3 phân thức của M = 1 và 1 phân thức còn lại = -1
Được cập nhật 16 tháng 2 lúc 6:18 1 câu trả lời

a, Ta có : M-1= \(\frac{a^2+b^2-c^2}{2ab}-1+\frac{b^2+c^2-a^2}{2bc}-1+\frac{a^2+c^2-b^2}{2ac}+1\)=\(\frac{\left(a-b\right)^2-c^2}{2ab}+\frac{\left(b-c\right)^2-a^2}{2bc}+\frac{\left(a+c\right)^2-b^2}{2ac}\)
=\(\frac{\left(a-b-c\right)\left(a-b+c\right)}{2ab}+\frac{\left(b-c-a\right)\left(b-c+a\right)}{2bc}+\frac{\left(a+c-b\right)\left(a+b+c\right)}{2ac}\)
=\(\frac{\left(a-b-c\right)\left(a-b+c\right)c+\left(b-c-a\right)\left(b-c+a\right)a+\left(a+c-b\right)\left(a+c+b\right)b}{2abc}\)
=\(\frac{\left(ac-bc-c^2\right)\left(a-b+c\right)-\left(a+c-b\right)\left(ba-ca+a^2\right)+\left(a+c-b\right)\left(ab+bc+b^2\right)}{^{ }2abc}\)
=\(\frac{\left(a+c-b\right)\left(ac-bc-c^2-ba+ca-a^2+ab+bc+b^2\right)}{^{ }2abc}\)
=\(\frac{\left(a+c-b\right)\left[b^2-\left(a-c\right)^2\right]}{2abc}=\frac{\left(a+c-b\right)\left(b-a+c\right)\left(b+a-c\right)}{2abc}\) (*)
a, vì a,b,c là độ dài 3 cạnh của 1 tam giác nên a,b,c>0 và a+b-c>,a+c-b>0,
b+c-a>0 \(\Rightarrow\) (*) >0 nên M-1>0 \(\Rightarrow\)M>0
b,Với M=1, ta có M-1 = (*)=0 \(\Rightarrow\)(a+c-b)(b-a+c)(b+a-c)=0
\(\Leftrightarrow\left[\begin{matrix}a+b=c\\a+c=b\\b+c=a\end{matrix}\right.\)
. TH1 : a+b=c\(\Rightarrow\) \(\frac{a^2+b^2-c^2}{2ab}-1=\frac{\left(a-b\right)^2-\left(a+b\right)^2}{2ab}=\frac{-4ab}{2ab}=-2\)\(\Rightarrow\frac{a^2+b^2-c^2}{2ab}=-1\)
mặt khác a+b=c thì a-c=b \(\Rightarrow\frac{a^2+c^2-b^2}{2ac}+1=\frac{\left(a+c\right)^2-\left(a-c\right)^2}{2ac}=\frac{4ac}{2ac}=2\)
\(\Rightarrow\frac{a^2+c^2-b^2}{2ac}=1\)\(\Rightarrow\frac{b^2+c^2-a^2}{2bc}=1\)(đpcm)
. TH2 và TH3 tương tự như trường hợp 1 ta chứng minh được bài toán
Tìm \(x,y\in\) N* : \(xy^2+2xy+x=32y\)
Được cập nhật 31 tháng 12 2018 lúc 20:01 1 câu trả lời

Lời giải:
\(xy^2+2xy+x=32y\)
\(\Leftrightarrow x(y^2+2y+1)=32y\)
\(\Leftrightarrow x(y+1)^2=32y\Rightarrow x=\frac{32y}{(y+1)^2}\)
Ta thấy \((y+1)^2-4y=(y-1)^2\geq 0\Rightarrow (y+1)^2\geq 4y\)
\(\Rightarrow x=\frac{32y}{(y+1)^2}\leq \frac{32y}{4y}=8\)
Từ đây ta xét các TH:
+) Nếu $x$ chẵn thì \(x\in\left\{2;4;6;8\right\}\)
Thử từng giá trị của $x$ ta thu được \((x,y)=(6,3); (8,1)\)
+) Nếu $x$ lẻ thì vì \(x(y+1)^2=32y\vdots 32\Rightarrow (y+1)^2\vdots 32\)
\(y+1\vdots 8\)
\(\Rightarrow 32y=x(y+1)^2\vdots 64\Rightarrow y\vdots 2\) (vô lý vì $y+1$ chẵn thì $y$ phải lẻ)
Vậy $(x,y)=(6,3), (8,1)$
Có 3 ô tô chạy trên đường AB . Cùng lúc một ô tô thứ nhất chạy từ A , ô tô thứ 2 chạy từ B , khi ô tô thứ nhất chạy tới B , thì từ B ô tô thừ 3 bắt đầu vè A và cũng tới A với ô tô thứ 2 . Tại giữa quãng đường AB, một người thấy rằng sau khi ô tô thứ nhất đi qua 10 phút thì ô tô thứ 2 đi qua và sau đó 20 phút nữa thì ô tô thứ 3 đi qua . Vận tốc ô tô thứ 3 là 120 km/h . Hổi vận tốc của xe 1, xe 2 và quãng đường AB ?
giúp mk nha câu này chả hiểu gì cả !!!
Được cập nhật 7 tháng 12 2018 lúc 20:15 1 câu trả lời

Gọi x là quãng đường AB và v là vận tốc của xe thứ nhất .
Thời gian xe thứ nhất từ A đến B là \(\dfrac{x}{v}\)
Đi nửa quãng đường mà xe thứ nhất đã mất ít hơn xe thứ hai \(\dfrac{1}{6}h\), vậy đi cả quãng đường thì xe thứ hai đi mất : \(\dfrac{x}{v}+\dfrac{1}{3}.\)
Khi xe thứ nhất đến B thì xe thứ ba mới bắt đầu đi, cho nên nếu tính từ xe thứ hai đi từ B đến lúc cả xe thứ hai và xe thứ ba cùng đến B thì thời gian đó là : \(\dfrac{x}{v}+\dfrac{x}{120}\)
Ta có phương trình : \(\dfrac{x}{v}+\dfrac{1}{3}=\dfrac{x}{v}+\dfrac{x}{120}\Rightarrow\dfrac{x}{120}=\dfrac{1}{3}\Rightarrow x=40\left(km\right).\)
Xe thứ ba đi đoạn đường BC mất : \(\dfrac{1}{2}-\dfrac{1}{6}=\dfrac{1}{3}\left(h\right)\)
Vì sau khi xe thứ nhất đi qua C : 10 + 20 = 30 ( phút ) thì xe thứ ba mới đi qua C . Vậy tốc độ ô tô thứ nhất là : \(10:\dfrac{1}{3}=60\) ( km/h). Thời gian xe thứ nhất đi hét đoạn đường là \(\dfrac{2}{3}\left(h\right)\).
Vậy xe thứ hai đi hết cả đoạn đường mất : \(\dfrac{2}{3}+\dfrac{1}{3}=1\left(h\right).\)
Vận tốc xe thứ hai là 40 km/h
Cho x, y, z là 3 số thực dương và x + y + z ≤ 1. CMR:
\(\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\text{≥ }\sqrt{82}\)
Được cập nhật 16 tháng 5 2018 lúc 14:53 1 câu trả lời

\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)
\(TT:\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{z}\right);\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{x}\right)\)
\(S\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)
\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)
Tam giác ABC ( AB = AC ) . Trên 2 cạnh AB, AC và về phía ngoài tam giác , vẽ các tam giác đều ADB, AEC.
a) Chứng minh BE = CD
b) Kẻ phân giác AH của tam giác cân. CHứng minh BE, CD, AH đồng quy
Được cập nhật 3 tháng 5 2018 lúc 19:56 2 câu trả lời

a)
Xét \(\Delta DAC\) và \(\Delta EAC\) có :
AD = AC
\(\widehat{DAC}=\widehat{EAB}\left(=60^0+\widehat{ABC}\right)\)
AB = AE
=> \(\Delta DAC\) = \(\Delta EAC\) (( c.g.c )
=> DC = BE
b) Gọi giao điểm của BC và DE là K
Ta c/m được \(\Delta DBK=\Delta ECK\left(g.c.g\right)\)
=> KB = KC
Tiếp tục c/m được \(\Delta AKB=\Delta AKC\left(c.g.c\right)\)
=> \(\widehat{BAK}=\widehat{CAK}\)
=> AK à tia phân giác của \(\widehat{BAC}\)
=> đpcm

Cm cố định ak bn
Cho a,b,c là độ dài ba cạnh của một tam giác , chứng minh rằng :
\(\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\ge3\)
Được cập nhật 7 tháng 2 2018 lúc 19:58 3 câu trả lời

Đặt \(x=b+c-a,y=c+a-b,z=a+b-c\) , khi đó : \(\begin{cases}2a=y+z\\2b=x+z\\2c=x+y\end{cases}\)
Ta có : \(\frac{2a}{b+c-a}+\frac{2b}{c+a-b}+\frac{2c}{a+b-c}=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)
\(\ge2+2+2=6\)
\(\Rightarrow\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)

ta có \(\frac{a}{b+c}-1+\frac{b}{a+c}-1+\frac{c}{a+b}-1=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}-3\) vì a b c là cách cạnh của tam giác nên biểu thức trên >= 3
CMR: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\) với a,b,c > 0
Được cập nhật 11 tháng 12 2017 lúc 11:54 2 câu trả lời

Đặt x = a+b , y = b+c , z = c+a
=> \(\begin{cases}a=\frac{x+z-y}{2}\\b=\frac{x+y-z}{2}\\c=\frac{y+z-x}{2}\end{cases}\)
Thay vào tính : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{x+z-y}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}\)
\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)\right]-\frac{3}{2}\)
\(\ge\frac{1}{2}\left(2+2+2\right)-\frac{3}{2}=\frac{3}{2}\)
. Cho tam giác ABC có độ dài ba cạnh BC, AC, AB lần lượt là a, b, c. Các đường cao tương ứng là ha, hb, hc. Tam giác đó là tam giác gì khi biểu thức\(\frac{\left(a+b+c\right)^2}{h_a^2+h_b^2+h_c^2}\) đạt giá trị nhỏ nhất?
Được cập nhật 7 tháng 9 2017 lúc 16:10 0 câu trả lời
Cho tam giác nhọn ABC. Kẻ đường trung tuyến AM lên cạnh BC. Trên cạnh AB lần lượt lấy 2 điểm D và E sao cho AD= DE = EB = 1/3 AB. Chứng minh:
a) EM là đường trung bình của tam giác BDC. Chứng minh: EDCM là hình thang
b) Gọi I là giao điểm của DC với AM. Chứng minh: DIME là hình thang và I là trung điểm AM
Được cập nhật 29 tháng 8 2017 lúc 20:07 2 câu trả lời


a)Ta có \(\begin{cases}BE=ED=\frac{1}{2}BD\\BM=MC\end{cases}\) => ME là đường trung bình của tam giác BDC
=> EM // CD => EMCD là hình thang.
b) Ta chứng minh được ME // CD hay ME // ID (câu a) =>DIME là hình thang
Lại có AD = DE => DI là đường trung bình của tam giác AEM => AI = IM => I là trung điểm AM
a ) Phân tích đa thức sau thành nhân tử : P (x ) = 3x^2-27x+54
Với giá trị nào thì P (x) nhận giá trị không âm ?
b ) Tìm m và p sao cho biểu thức : A = m^2-4mp+5p^2+10m-22p+28 đạt GTNN . Tính giá trị ấy ?
1 câu trả lời

a ) \(P\left(x\right)=3x^2-27x+54=3\left(x^2-9x+15\right)\)
\(=3\left[\left(x^2-3x\right)-\left(6x-18\right)\right]=3\left[x\left(x-3\right)-6\left(x-3\right)\right].\)
\(\Rightarrow P\left(x\right)=3\left(x-3\right)\left(x-6\right)\)
Ta có : \(P\left(x\right)\ge0\Leftrightarrow\left(x-3\right)\left(x-6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3\ge0\\x-6\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3\le0\\x-6\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge6\\x\le3\end{matrix}\right.\)
Vậy \(P\left(x\right)\ge0\Leftrightarrow x\le3\) hoặc \(x\ge6\)
b ) \(A=m^2-4mp+5p^2+10m-22p+28\)
\(=m^2-4mp+4p^2+10m-20p+p^2-2p+1+27\)
\(=\left(m-2p\right)^2+10\left(m-2p\right)+\left(p-1\right)^2+25+2\)
\(=\left(m-2p+5\right)^2+\left(p-1\right)^2+2\ge2\)
Vậy GTNN của A là 2 khi và chỉ khi \(\left\{{}\begin{matrix}p-1=0\\m-2p+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}p=1\\m=-3\end{matrix}\right..\)
Vậy ...............
\(=3\left[\left(x^2-3x\right)-\left(6x-18\right)\right]=3\left[x\left(x-3\right)-6\left(x-3\right)\right]\)
tìm phân nguyên của a với
A=\(\sqrt{2}+\sqrt[3]{\dfrac{3}{2}}+\sqrt[4]{\dfrac{4}{3}}+.......+\sqrt[n+1]{\dfrac{n+1}{n}}\)
1 câu trả lời

Dạng tổng quát: \(\sqrt[k+1]{\frac{k+1}{k}}>\sqrt[k+1]{\frac{k+1}{k+1}}=1\) với k = 1; 2; 3; ...; n
=> \(a=\sqrt{2}+\sqrt[3]{\frac{3}{2}}+\sqrt[4]{\frac{4}{3}}+...+\sqrt[n+1]{\frac{n+1}{n}}>n\) (1)
Áp dụng bđt AM-GM cho k + 1 số dương ta có:
\(\sqrt[k+1]{\frac{k+1}{k}}=\sqrt[k+1]{1.1.1...1.\frac{k+1}{k}}< \frac{1+1+1+...+1+\frac{k+1}{k}}{k+1}=\frac{1.k}{k+1}+\frac{\frac{k+1}{k}}{k+1}\)
\(\Leftrightarrow\sqrt[k+1]{\frac{k+1}{k}}< \frac{k}{k+1}+\frac{1}{k}=1-\frac{1}{k+1}+\frac{1}{k}=1+\left(\frac{1}{k}-\frac{1}{k+1}\right)\)
\(< 1+\frac{1}{k\left(k+1\right)}\)
Áp dụng vào bài ta được:
\(a< \left(1+\frac{1}{1.2}\right)+\left(1+\frac{1}{2.3}\right)+\left(1+\frac{1}{3.4}\right)+...+\left(1+\frac{1}{n\left(n+1\right)}\right)\)
\(a< n+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\right)\)
\(a< n+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\right)\)
\(a< n+\left(1-\frac{1}{n+1}\right)< n+1\) (2)
Từ (1) và (2) suy ra phần nguyên của a là n
cho 3 số a,b,c thỏa mãn điều kiện \(\frac{1}{bc-a^2}+\frac{1}{ca-b^2}+\frac{1}{ab-c^2}=0\)
CMR: \(\frac{a}{\left(bc-a^2\right)^2}+\frac{b}{\left(ca-b^2\right)^2}+\frac{c}{\left(ab-c^2\right)^2}=0\)
2 câu trả lời

từ giả thiết ta có
\(\frac{1}{bc-a^2}=\frac{1}{b^2-ca}+\frac{1}{c^2-ab}=\frac{c^2-ab+b^2-ca}{\left(b^2-ca\right)\left(c^2-ab\right)}\)
Nhân hai vế với \(\frac{a}{bc-a^2}\) ta có:
\(\frac{a}{\left(bc-a^2\right)^2}=\frac{ac^2-a^2b+ab^2-ca^2}{\left(bc-a^2\right)\left(b^2-ca\right)\left(c^2-ab\right)}\)
làm tương tự với hai số hạng còn lại ta được:
\(\frac{b}{\left(ca-b^2\right)^2}=\frac{bc^2-ab^2+a^2b-b^2c}{\left(bc-a^2\right)\left(b^2-ca\right)\left(c^2-ab\right)}\);\(\frac{c}{\left(ab-c^2\right)^2}=\frac{b^2c-c^2a+a^2c-bc^2}{\left(bc-a^2\right)\left(b^2-ca\right)\left(c^2-ab\right)}\)
cộng ba vế của đẳng thức trên ta được kq là 0

cách kia dài quá
Đặt \(x=bc-a^2;y=ac-b^2;z=ab-c^2\)
Suy ra cần chứng minh \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) thì \(\frac{a}{x^2}+\frac{b}{y^2}+\frac{c}{z^2}=0\)
Xét \(T=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\).....
CMR với a,b,c>0 thì \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c\)
Được cập nhật 30 tháng 12 2016 lúc 12:31 2 câu trả lời

Áp dụng bđt Cauchy, ta có : \(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2b}{b}}=2a\)
tương tự : \(\frac{b^2}{c}+c\ge2b\) ; \(\frac{c^2}{a}+a\ge2a\)
\(\Rightarrow2\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c\)(đpcm)
Tìm x:
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x-42}=\frac{1}{18}\)
Được cập nhật 18 tháng 12 2016 lúc 11:29 1 câu trả lời

Đk:\(\left(x\ne-4;x\ne-5;x\ne-6;x\ne-7\right)\)
\(\Rightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{3}{x^2+11x+28}=\frac{1}{18}\)
\(\Leftrightarrow x^2+11x+28=54\)
\(\Rightarrow x^2+11x-26=0\)
\(\Rightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=-13\end{array}\right.\)
Vậy pt có tập nghiệm là S={2,-13}
...
Dưới đây là những câu hỏi có bài toán hay do Hoc24 lựa chọn.
Building.
Bảng xếp hạng môn Toán
Nguyễn Huy Tú1835GP
Akai Haruma1752GP
Nguyễn Huy Thắng1636GP
Nguyễn Thanh Hằng1056GP
Mashiro Shiina931GP
Mysterious Person903GP
soyeon_Tiểubàng giải903GP
Võ Đông Anh Tuấn804GP
Phương An797GP
Trần Việt Linh765GP
Nguyễn Trương55GP
Truong Viet Truong18GP
Nguyễn Việt Lâm14GP
Khôi Bùi 13GP
Nguyen11GP
Ánh Lê8GP
Phùng Tuệ Minh7GP
Y7GP
DƯƠNG PHAN KHÁNH DƯƠNG5GP
Bastkoo4GP
Đặt b+c-a=x, c+a-b=y, a+b-c=z thì 2a =y+z, 2b +x+z, 2c +x+y. Ta có:
\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\)
= \(\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\)
=\(\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\)(1)
Mà \(\dfrac{x}{y}+\dfrac{y}{x}-2=\dfrac{x^2+y^2-2xy}{xy}=\dfrac{\left(x-y\right)^2}{xy}\ge0\)( vì xy >0)
\(\Rightarrow\)\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)(2)
Tương tự: \(\dfrac{z}{x}+\dfrac{x}{z}\ge2\)(3)
\(\dfrac{z}{y}+\dfrac{y}{z}\ge2\)(4)
Từ (1),(2),(3) và (4):
\(\Rightarrow\)\(\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\)\(\ge6\)
Hay \(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\) \(\ge6\)
Do đó: \(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)(đpcm)