ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
a) Ta có: \(C=\left(x^2-1\right)\cdot\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}+1\right)\)
\(=\left(x^2-1\right)\cdot\left(\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x-1}{\left(x+1\right)\left(x-1\right)}+\dfrac{x^2-1}{\left(x-1\right)\left(x+1\right)}\right)\)
\(=\left(x^2-1\right)\cdot\dfrac{x+1-x+1+x^2-1}{\left(x+1\right)\left(x-1\right)}\)
\(=x^2-1\)
\(A=3yz+\left(4-y-z\right)\left(y+2z\right)\)
\(A=-y^2+4y-2z^2+8z\)
\(A=-\left(y-2\right)^2-2\left(z-2\right)^2+12\le12\)
\(A_{max}=12\) khi \(\left(x;y;z\right)=\left(0;2;2\right)\)
a) (x + 2)(x2 + 3x + 1)
= x.x2 + x.3x + x.1 + 2.x2 + 2.3x + 2.1
= x3 + 3x2 + x + 2x2 + 6x + 2
= x3 + 5x2 + 7x + 2
b) (2x3 + 10x2 + 9x + 4) : (x + 4)
= (2x3 + 8x2 + 2x2 + 8x + x + 4) : (x + 4)
= [(2x3 + 8x2) + (2x2 + 8x) + (x + 4)] : (x + 4)
= [2x2(x + 4) + 2x(x + 4) + (x + 4)] : (x + 4)
= (x + 4)(2x2 + 2x + 1) : (x + 4)
= 2x2 + 2x + 1
Bài 1:
a) Ta có: \(A=\left(x+3\right)^2+2\left(x+3\right)\left(x-3\right)-3x\left(x-3\right)\)
\(=x^2+6x+9+2\left(x^2-9\right)-3x^2+9x\)
\(=-2x^2+15x+9+2x^2-18\)
\(=15x-9\)
b) Ta có: \(\dfrac{2x}{3x-3y}-\dfrac{x^2}{x-y}\)
\(=\dfrac{2x}{3\left(x-y\right)}-\dfrac{3x^2}{3\left(x-y\right)}\)
\(=\dfrac{2x-3x^2}{3\left(x-y\right)}\)
c) Ta có: \(\left(x-1\right)^2+x\left(4-x\right)=0\)
\(\Leftrightarrow x^2-2x+1+4x-x^2=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\)
hay \(x=-\dfrac{1}{2}\)
Vậy: \(x=-\dfrac{1}{2}\)
(x-3)(x2 + 3x + 9) - (3x-17) = x(x2 - 8)
<=> x3 - 27 - 3x + 17 = x3 - 8x
<=> 5x - 10 = 0
<=> 5x = 10
<=> x = 2
Vậy ...
x2 - (1-x2) -4 + 4x2 = x2 -1 + x2 - 4 + 4x2 = 6x2 - 5
a ,\(4x^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(2x-x+3\right)\left(2x+x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\3x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\3x=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
Vậy
b,\(x^2-4+\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy ...
a) Ta có: \(\dfrac{2x^2-2x}{x-1}\)
\(=\dfrac{2x\left(x-1\right)}{x-1}\)
=2x
b) Ta có: \(\dfrac{x^2+2x+1}{3x^2+3x}\)
\(=\dfrac{\left(x+1\right)^2}{3x\left(x+1\right)}\)
\(=\dfrac{x+1}{3x}\)
c) Ta có: \(\dfrac{x}{3x-3}+\dfrac{1}{x^2-1}\)
\(=\dfrac{x}{3\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x+1+3}{3\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x+4}{3x^2-3}\)
a, \(\dfrac{2x^2-2x}{x-1}=\dfrac{2x\left(x-1\right)}{x-1}=2x\) ( đk : \(x\ne1\) )
b,\(\dfrac{x^2+2x+1}{3x^2+3x}=\dfrac{\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{x+1}{3x}\) ( đk : \(x\ne-1\) )
c
=