Ôn tập cuối năm môn Hình học

Tan Thuy Hoang
Trung tá -
13 tháng 1 lúc 22:27

Bài này là định lý khá cơ bản của tứ giác điều hoà.

Do AM, AC đẳng giác của góc BAD nên dễ dàng chứng minh được:

\(\widehat{BAM}=\widehat{CAD}\).

Mặt khác do tứ giác ABCD nội tiếp nên \(\widehat{ABM}=\widehat{ACD}\).

Từ đó \(\Delta ABM\sim\Delta ACD(g.g)\)

\(\Rightarrow\dfrac{AB}{BM}=\dfrac{AC}{CD}\Rightarrow AB.CD=BM.AC\).

Chứng minh tương tự, ta cũng có \(AD.BC=CM.AC\).

Mà BM = CM nên \(AB.CD=AD.BC\) hay tứ giác ABCD điều hoà.

(Định lý đảo vẫn đúng).

Bình luận (0)
Nguyễn Việt Lâm
Trung tá -
21 tháng 12 2020 lúc 15:22

Ta có:

\(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)

Mà \(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)

\(\Rightarrow\overrightarrow{AG}=\dfrac{2}{3}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)

\(\dfrac{1}{3}\left(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}\right)=\dfrac{1}{3}\left(\overrightarrow{AG}+\overrightarrow{GG'}+\overrightarrow{G'A'}+\overrightarrow{BG}+\overrightarrow{GG'}+\overrightarrow{G'B'}+\overrightarrow{CG}+\overrightarrow{GG'}+\overrightarrow{G'C'}\right)\)

\(=\dfrac{1}{3}.3.\overrightarrow{GG'}=\overrightarrow{GG'}\)

Bình luận (0)
Hồng Phúc
Thiếu tá -
16 tháng 12 2020 lúc 9:25

a,Vuông tại A mới đúng

 \(AB=2\sqrt{10};AC=\sqrt{10};BC=5\sqrt{2}\)

\(\Rightarrow AB^2+AC^2=40+10=50=BC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A

b, \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC.sinA=\dfrac{1}{2}.2\sqrt{10}.\sqrt{10}.sin90^o=10\)

c, \(D\left(0;y_0\right)\)

\(A;C;D\) thẳng hàng \(\Leftrightarrow\overrightarrow{AC}=k.\overrightarrow{AD}\)

\(\Leftrightarrow\left\{{}\begin{matrix}3=k\\-1=k\left(y_0-4\right)\end{matrix}\right.\Rightarrow y_0=\dfrac{11}{3}\)

\(\Rightarrow D\left(0;\dfrac{11}{3}\right)\)

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN